Within-basket recommendation reduces the exploration time of users, where the user's intention of the basket matters. The intent of a shopping basket can be retrieved from both user-item collaborative filtering signals and multi-item correlations. By defining a basket entity to represent the basket intent, we can model this problem as a basket-item link prediction task in the User-Basket-Item (UBI) graph. Previous work solves the problem by leveraging user-item interactions and item-item interactions simultaneously. However, collectivity and heterogeneity characteristics are hardly investigated before. Collectivity defines the semantics of each node which should be aggregated from both directly and indirectly connected neighbors. Heterogeneity comes from multi-type interactions as well as multi-type nodes in the UBI graph. To this end, we propose a new framework named BasConv, which is based on the graph convolutional neural network. Our BasConv model has three types of aggregators specifically designed for three types of nodes. They collectively learn node embeddings from both neighborhood and high-order context. Additionally, the interactive layers in the aggregators can distinguish different types of interactions. Extensive experiments on two real-world datasets prove the effectiveness of BasConv. * work is done during internship at Walmart Labs
Motivation: Advances in high-resolution microscopy have recently made possible the analysis of gene expression at the level of individual cells. The fixed lineage of cells in the adult worm Caenorhabditis elegans makes this organism an ideal model for studying complex biological processes like development and aging. However, annotating individual cells in images of adult C.elegans typically requires expertise and significant manual effort. Automation of this task is therefore critical to enabling high-resolution studies of a large number of genes.Results: In this article, we describe an automated method for annotating a subset of 154 cells (including various muscle, intestinal and hypodermal cells) in high-resolution images of adult C.elegans. We formulate the task of labeling cells within an image as a combinatorial optimization problem, where the goal is to minimize a scoring function that compares cells in a test input image with cells from a training atlas of manually annotated worms according to various spatial and morphological characteristics. We propose an approach for solving this problem based on reduction to minimum-cost maximum-flow and apply a cross-entropy–based learning algorithm to tune the weights of our scoring function. We achieve 84% median accuracy across a set of 154 cell labels in this highly variable system. These results demonstrate the feasibility of the automatic annotation of microscopy-based images in adult C.elegans.Contact: saerni@cs.stanford.edu
With the rise of social networks, large-scale graph analysis becomes increasingly important. Because SQL lacks the expressiveness and performance needed for graph algorithms, lower-level, general-purpose languages are often used instead. For greater ease of use and efficiency, we propose SociaLite, a high-level graph query language based on Datalog. As a logic programming language, Datalog allows many graph algorithms to be expressed succinctly. However, its performance has not been competitive when compared to low-level languages. With SociaLite, users can provide high-level hints on the data layout and evaluation order; they can also define recursive aggregate functions which, as long as they are meet operations, can be evaluated incrementally and efficiently. Moreover, recursive aggregate functions make it possible to implement more graph algorithms that cannot be implemented in Datalog. We evaluated SociaLite by running nine graph algorithms in total; eight for social network analysis (shortest paths, PageRank, hubs and authorities, mutual neighbors, connected components, triangles, clustering coefficients, and betweenness centrality) and one for biological network analysis (Eulerian cycles). We use two real-life social graphs, LiveJournal and Last.fm, for the evaluation as well as one synthetic graph. The optimizations proposed in this paper speed up almost all the algorithms by 3 to 22 times. SociaLite even outperforms typical Java implementations by an average of 50 percent for the graph algorithms tested. When compared to highly optimized Java implementations, SociaLite programs are an order of magnitude more succinct and easier to write. Its performance is competitive, with only 16 percent overhead for the largest benchmark, and 25 percent overhead for the worst case benchmark. Most importantly, being a query language, SociaLite enables many more users who are not proficient in software engineering to perform network analysis easily and efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.