Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structural factors, they display interesting dynamic phenomena such as wave propagation, wave steepening, and development of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts, and the development of fingers. In this review a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical system is obtained that does not have the mathematical complexity of the original free-boundary problem but does preserve many of the important features of its physics. The basics of the long-wave theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy with Reynolds's theory of lubrication can be drawn. A general nonlinear evolution equation or equations are then derived and various particular cases are considered. Each case contains a discussion of the linear stability properties of the base-state solutions and of the nonlinear spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute concentration). The cases reducing to a single highly nonlinear evolution equation are first examined. These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular) forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc. The dynamics of the films with a spatial dependence of the base-state solution are then studied. These include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and moving contact lines, including effects of heat and mass transport and van der Waals attractions, are then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also briefly discussed. The results discussed give motivation f...
We consider horizontal static liquid layers on planar solid boundaries and analyse their instabilities. The layers are either evaporating, when the plates are heated, or condensing, when the plates are cooled. Vapour recoil, thermocapillary, and rupture instabilities are discussed, along with the effects of mass loss (or gain) and non-equilibrium thermodynamic effects. Particular attention is paid to the development of dryout. We derive long-wave evolution equations for the interface shapes that govern the two-dimensional nonlinear stability of the layers subject to the above coupled mechanisms. These equations are analysed and their predictions discussed. Previous theoretical and experimental results are reviewed and compared with the present results. Finally, we discuss limitations of the modelling and extend our derivation to the case of three-dimensional disturbances.
A planar liquid layer is bounded below by a rigid plate and above by an interface with a passive gas. A steady shear flow is set up by imposing a temperature gradient along the layer and driving the motion by thermocapillarity. This dynamic state is susceptible to two types of thermal-convective instabilities: (i) stationary longitudinal rolls, which involve the classical Marangoni instability studied by Pearson; and (ii) unsteady hydrothermal waves, which involve a new mechanism of instability deriving its energy from the horizontal temperature gradients. Thermal stability characteristics for liquid layers with and without return-flow profiles are presented as functions of the Prandtl number of the liquid and the Biot number of the interface. Comparisons are made with available experimental observations.
A fluid-fluid interface that joins a solid surface forms a common line. If the common line moves along the solid, a mutual displacement process is involved and is studied here. Some simple experiments motivate the formulation of the basic assumption of the analysis. The basic assumption is a formalization of the idea that the fluid-fluid interface rolls on or unrolls off the solid. This forms an axiom for the mostly kinematical analysis that follows. The predictions are tested through a series of qualitative experiments. The role of the no-slip boundary condition at the solid surface is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.