The collagenous structure of the knee menisci is integral to the mechanical integrity of the tissue and the knee joint. The tie-fibre structure of the tissue has largely been neglected, despite previous studies demonstrating its correlation with radial stiffness. This study has evaluated the structure of the tie-fibres of bovine menisci using 2D and 3D microscopy techniques. Standard collagen and proteoglycan (PG) staining and 2D light microscopy techniques were conducted. For the first time, the collagenous structure of the menisci was evaluated using 3D, second harmonic generation (SHG) microscopy. This technique facilitated the imaging of collagen structure in thick sections (50-100 μm). Imaging identified that tie-fibres of the menisci arborize from the outer margin of the meniscus toward the inner tip. This arborization is associated with the structural arrangement of the circumferential fibres. SHG microscopy has definitively demonstrated the 3D organization of tie-fibres in both sheets and bundles. The hierarchy of the structure is related to the organization of circumferential fascicles. Large tie-fibre sheets bifurcate into smaller sheets to surround circumferential fascicles of decreasing size. The tie-fibres emanate from the lamellar layer that appears to surround the entire meniscus. At the tibial and femoral surfaces these tie-fibre sheets branch perpendicularly into the meniscal body. The relationship between tie-fibres and blood vessels in the menisci was also observed in this study. Tie-fibre sheets surround the blood vessels and an associated PG-rich region. This subunit of the menisci has not previously been described. The size of tie-fibre sheets surrounding the vessels appeared to be associated with the size of blood vessel. These structural findings have implications in understanding the mechanics of the menisci. Further, refinement of the complex structure of the tie-fibres is important in understanding the consequences of injury and disease in the menisci. The framework of meniscus architecture also defines benchmarks for the development of tissue-engineered replacements in the future.
The menisci are intricately organized structures that perform many tasks in the knee. We review their structure and function and introduce new data about their tibial and femoral surfaces. As the femur and tibia approach each other when the knee is bearing load, circumferential tension develops in the menisci, enabling the transmission of compressive load between the femoral and tibial cartilage layers. A low shear modulus is necessary for the tissue to adapt its shape to the changing radius of the femur as that bone moves relative to the tibia during joint articulation. The organization of the meniscus facilitates its functions. In the outer region of the menisci, intertwined collagen fibrils, fibers, and fascicles with predominantly circumferential orientation are prevalent; these structures are held together by radial tie fibers and sheets. Toward the inner portion of the menisci, there is more proteoglycan and the structure becomes more cartilage-like. The transition between these structural forms is gradual and seamless. The flexible roots, required for rigid body motion of the menisci, meld with both the tibia and the outer portion of the menisci to maintain continuity for resistance to the circumferential tension. Our new data demonstrate that the femoral and tibial surfaces of the menisci are structurally analogous to the surfaces of articular cartilage, enabling consistent modes of lubrication and load transfer to occur at the interfacing surfaces throughout motion. The structure and function of the menisci are thus shown to be strongly related to one another: form clearly complements function.
An ex vivo heart perfusion device preserves the donor heart in a warm beating state during transfer between extraction and implantation surgeries. One of the current challenges includes the use of rigid and noncompliant plastic tubes, which causes injuries to the heart at the junction between the tissue and the tube. The compliant and rapidly strain-stiffening mechanical property that generates a “J-shaped” stress–strain behavior is necessary for producing the Windkessel effect, which ensures continuous flow of blood through the aorta. In this study, we mimic the J-shaped and anisotropic stress–strain behavior of human aorta in synthetic elastomers to replace the problematic noncompliant plastic tube. First, we assess the mechanical properties of human (n = 1) and porcine aorta (n = 14) to quantify the nonlinear and anisotropic behavior under uniaxial tensile stress from five different regions of the aorta. Second, fabric-reinforced elastomer composites were prepared by reinforcing silicone elastomers with embedded fabrics in a trilayer geometry. The knitted structures of the fabric provide strain-stiffening as well as anisotropic mechanical properties of the resulting composite in a deterministic manner. By optimizing the combination between different elastomers and fabrics, the resulting composites matched the J-shaped and anisotropic stress–strain behavior of natural human and porcine aorta. Finally, improved analytical constitutive models based on Gent’s and Mooney–Rivlin’s constitutive model (to describe the elastomer matrix) combined with Holzapfel–Gasser–Ogden’s model (to represent the stiffer fabrics) were developed to describe the J-shaped behavior of the natural aortas and the fabric-reinforced composites. We anticipate that the suggested fabric-reinforced silicone elastomer composite design concept can be used to develop complex soft biomaterials, as well as in emerging engineering fields such as soft robotics and microfluidics, where the Windkessel effect can be useful in regulating the flow of fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.