Given a pair of directed line graphs, the problem of ascertaining whether or not they are isomorphic is one for which no efficient algorithmic solution is known. Since a straightforward enumerative algorithm might require 40 years of running time on a very high speed computer in order to compare two 15-node graphs, a more sophisticated approach seems called for. The situation is similar to that prevailing in areas such as game-playing and theorem-proving, where practical algorithms are unknown (for the interesting cases), but where various practical though only partially successful techniques are available. GIT--Graph Isomorphism Tester--incorporates a variety of processes that attempt to narrow down the search for an isomorphism, or to demonstrate that none exists. No one scheme is relied upon exclusively for a solution, and the program is designed to avoid excessive computation along fruitless lines. GIT has been written in the COMIT language and successfully tested on the IBM 7090.
The various modes of failure of asynchronous sequential logic circuits due to timing problems are considered. These are hazards, critical races and metastable states. It is shown that there is a mechanism common to all forms of hazards and to metastable states. A similar mechanism, with added complications, is shown to characterize critical races. Means for defeating various types of hazards and critical races through the use of one sided delay constraints are introduced. A method is described for determining from a flow table situations in which metastable states may be entered. A circuit technique for defeating metastability problems in self timed systems is presented. It is shown that the use of simulation for verifying the correctness of a circuit with given bounds on the branch delays cannot be relied upon to expose all timing problems. An example is presented that refutes the conjecture that replacing pure delays with inertial delays can only eliminate glitches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.