Verrucomicrobia is a bacterial phylum that is commonly detected in soil, but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as 11 coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples, and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S ribosomal RNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that subdivision 1 and 4 generally dominated marine bacterial communities, whereas subdivision 2 was more frequent in low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared with sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.
bRecent studies of natural environments have revealed vast genetic reservoirs of antibiotic resistance (AR) genes. Soil bacteria and human pathogens share AR genes, and AR genes have been discovered in a variety of habitats. However, there is little knowledge about the presence and diversity of AR genes in marine environments and which organisms host AR genes. To address this, we identified the diversity of genes conferring resistance to ampicillin, tetracycline, nitrofurantoin, and sulfadimethoxine in diverse marine environments using functional metagenomics (the cloning and screening of random DNA fragments). Marine environments were host to a diversity of AR-conferring genes. Antibiotic-resistant clones were found at all sites, with 28% of the genes identified as known AR genes (encoding beta-lactamases, bicyclomycin resistance pumps, etc.). However, the majority of AR genes were not previously classified as such but had products similar to proteins such as transport pumps, oxidoreductases, and hydrolases. Furthermore, 44% of the genes conferring antibiotic resistance were found in abundant marine taxa (e.g., Pelagibacter, Prochlorococcus, and Vibrio). Therefore, we uncovered a previously unknown diversity of genes that conferred an AR phenotype among marine environments, which makes the ocean a global reservoir of both clinically relevant and potentially novel AR genes. The spread of antibiotic resistance (AR) is critically important to human health. Past research has focused on resistance in clinical environments (e.g., hospitals), but the rise of communityacquired infections of resistant bacteria has fueled interest in AR genes in natural environments (1-3). Natural environments can be important, as they can act as reservoirs of AR genes (1, 2). Such environments include soils (4, 5), glaciers (6), and animals (7-9). Additionally, the frequency of AR in human hosts is also higher than previously thought (10, 11), and the AR genes found in soil bacteria have also been found in clinical pathogens (2). One set of environments that has received little attention is marine environments. Oceans are dilute systems, and hence, there may be little selection for antibiotic production, as compounds can rapidly diffuse away from the producer (12). However, there are three possible mechanisms that can lead to the occurrence of AR in marine environments. One is through coastal runoff of AR bacteria from terrestrial sources. In this case, we expect to find AR genes in bacterial taxa nonnative to marine environments. The second mechanism is through selection for AR due to anthropogenic antibiotic runoff, which challenges native bacteria to become resistant. The third is selection for resistance in response to antibiotic production in marine environments. Antagonistic microbial interactions can occur on marine snow (13) or in small parcels of seawater (14, 15). These interactions may include the production of antibiotics and subsequent selection for resistance.Despite the large expanse of the oceans, we currently have littl...
Abstract. Factors controlling the spatial distribution of bacterial diversity have been intensely studied, whereas less is known about temporal changes. To address this, we tested whether the mechanisms that underlie bacterial temporal b-diversity vary across different scales in three marine microbial communities. While seasonal turnover was detected, at least 73% of the community variation occurred at intra-seasonal temporal scales, suggesting that episodic events are important in structuring marine microbial communities. In addition, turnover at different temporal scales appeared to be driven by different factors. Intra-seasonal turnover was significantly correlated to environmental variables such as phosphate and silicate concentrations, while seasonal and interannual turnover were related to nitrate concentration and temporal distance. We observed a strong link between the magnitude of environmental variation and bacterial b-diversity in different communities. Analogous to spatial biogeography, we found different rates of community changes across temporal scales.
Extracellular enzymes are functional components of marine microbial communities that contribute to nutrient remineralization by catalyzing the degradation of organic substrates. Particularly in coastal environments, the magnitude of variation in enzyme activities across timescales is not well characterized. Therefore, we established the MICRO time series at Newport Pier, California, to assess enzyme activities and other ocean parameters at high temporal resolution in a coastal environment. We hypothesized that enzyme activities would vary most on daily to weekly timescales, but would also show repeatable seasonal patterns. In addition, we expected that activities would correlate with nutrient and chlorophyll concentrations, and that most enzyme activity would be bound to particles. We found that 34–48% of the variation in enzyme activity occurred at timescales <30 days. About 28–56% of the variance in seawater nutrient concentrations, chlorophyll concentrations, and ocean currents also occurred on this timescale. Only the enzyme β-glucosidase showed evidence of a repeatable seasonal pattern, with elevated activities in the spring months that correlated with spring phytoplankton blooms in the Southern California Bight. Most enzyme activities were weakly but positively correlated with nutrient concentrations (r = 0.24–0.31) and upwelling (r = 0.29–0.35). For the enzymes β-glucosidase and leucine aminopeptidase, most activity was bound to particles. However, 81.2% of alkaline phosphatase and 42.8% of N-acetyl-glucosaminidase activity was freely dissolved. These results suggest that enzyme-producing bacterial communities and nutrient dynamics in coastal environments vary substantially on short timescales (<30 days). Furthermore, the enzymes that degrade carbohydrates and proteins likely depend on microbial communities attached to particles, whereas phosphorus release may occur throughout the water column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.