Air temperatures have increased globally over the past decades, while rainfall changes have been more variable, but are taking place. In South Africa, substantial climate-related impacts are predicted, and protected area management agencies will need to respond actively to impacts. It is critical for management agencies to understand the way in which climate is changing locally to predict impacts and respond appropriately. Here, for the first time, we quantify observable changes in temperature and rainfall in South African national parks over the past five to ten decades. Our results show significant increases in temperatures in most parks, with increases being most rapid in the arid regions of the country. Increases in the frequency of extreme high temperature events were also most pronounced in these regions. These results are consistent with other climate studies conducted in these areas. Similar increases were identified for both minimum and maximum temperatures, though absolute minimum temperatures increased at greater rates than absolute maxima. Overall, rainfall trends were less obvious, but a decrease in rainfall was observed for the southern Cape (in three parks), and an increase was detected in one park. The observed temperature changes over the last 20-50 years have in several instances already reached those predicted for near future scenarios (2035), indicating that change scenarios are conservative. These results provide individual parks with evidence-based direction for managing impacts under current and projected changes in local climate. They also provide the management agency with sub-regional information to tailor policy and impact monitoring. Importantly, our results highlight the critical role that individual weather stations play in informing local land management and the concerns for parks that have no local information on changes in climate.
Aim: Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location: South Africa. Methods: We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results: Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions: Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.
The formation of a pronival (protalus) rampart on sub-Antarctic Marion Island is investigated. Morphological attributes show debris at the angle of repose on the rampart's proximal slope and at a lower angle on the distal slope. Relative-age dating, based on the percentage moss cover and weathering rind thickness of the clastic component, indicates accumulation mainly on the proximal slope and rampart crest, implying upslope (retrogressive) accumulation. This contrasts with a previously published model for pronival ramparts, which proposes rampart growth by addition of material to the distal slope. Development of the Marion Island rampart is suggested to result from the control exerted by a relatively low-angled surface and a shrinking snowbed. A small debris step formed on the proximal slope appears to be a response to decreased snowfalls due to changing climate over the last c. 50 years. Growth rate of the rampart is considered to be variable during the Holocene in response to changes in climate and debris supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.