Climate change has the potential to trigger social change. As a first step towards understanding mechanisms determining the vulnerability of animal societies to rising temperatures, we investigated interactions between social rank and thermoregulation in three arid-zone bird species: fawn-coloured lark (Mirafra africanoides, territorial); African red-eyed bulbul (Pycnonotus nigricans, loosely social) and sociable weaver (Philetairus socius, complex cooperative societies). We assessed relationships between body temperature (T b ), air temperature (T a ) and social rank in captive groups in the Kalahari Desert. Socially dominant weavers and bulbuls had lower mean T b than subordinate conspecifics, and dominant individuals of all species maintained more stable T b as T a increased. Dominant bulbuls and larks tended to monopolise available shade, but dominant weavers did not. Nevertheless, dominant weavers thermoregulated more precisely, despite expending no more behavioural effort on thermoregulation than subordinates. Increasingly unequal risks associated with heat stress may have implications for the stability of animal societies in warmer climates.