The ballistic performance of thick ultra-high molecular weight polyethylene (UHMW-PE) composite was experimentally determined for panel thicknesses ranging from 9 mm to 100 mm against 12.7 mm and 20 mm calibre fragment simulating projectiles (FSPs). Thin panels (<~10 mm thick) were observed to undergo large deflection and bulging, failing predominantly in fibre tension. With increased thickness the panels demonstrated a two-stage penetration process: shear plugging during the initial penetration followed by the formation of a transition plane and bulging of a separated rear panel. The transition plane between the two penetration stages was found to vary with impact velocity and target thickness. These variables are inter-related in ballistic limit testing as thicker targets are tested at higher velocities. An analytical model was developed to describe the two-stage perforation model, based on energy and momentum conservation. The shear plugging stage is characterised in terms of work required to produce a shear plug in the target material, while the bulging and membrane tension phase is based on momentum and classical yarn theory. The model was found to provide very good agreement with the experimental results for thick targets that displayed the twostage penetration process. For thin targets, which did not show the initial shear plugging phase, analytical models for membranes were demonstrated as suitable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.