Although the involvement of genetic abnormalities in autism spectrum disorders (ASD) is well-accepted, recent studies point to an equal contribution by environmental factors, particularly environmental toxicants. However, these toxicant-related studies in ASD have not been systematically reviewed to date. Therefore, we compiled publications investigating potential associations between environmental toxicants and ASD and arranged these publications into the following three categories: (a) studies examining estimated toxicant exposures in the environment during the preconceptional, gestational and early childhood periods; (b) studies investigating biomarkers of toxicants; and (c) studies examining potential genetic susceptibilities to toxicants. A literature search of nine electronic scientific databases through November 2013 was performed. In the first category examining ASD risk and estimated toxicant exposures in the environment, the majority of studies (34/37; 92%) reported an association. Most of these studies were retrospective case–control, ecological or prospective cohort studies, although a few had weaker study designs (for example, case reports or series). Toxicants implicated in ASD included pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, toxic waste sites, air pollutants and heavy metals, with the strongest evidence found for air pollutants and pesticides. Gestational exposure to methylmercury (through fish exposure, one study) and childhood exposure to pollutants in water supplies (two studies) were not found to be associated with ASD risk. In the second category of studies investigating biomarkers of toxicants and ASD, a large number was dedicated to examining heavy metals. Such studies demonstrated mixed findings, with only 19 of 40 (47%) case–control studies reporting higher concentrations of heavy metals in blood, urine, hair, brain or teeth of children with ASD compared with controls. Other biomarker studies reported that solvent, phthalate and pesticide levels were associated with ASD, whereas PCB studies were mixed. Seven studies reported a relationship between autism severity and heavy metal biomarkers, suggesting evidence of a dose–effect relationship. Overall, the evidence linking biomarkers of toxicants with ASD (the second category) was weaker compared with the evidence associating estimated exposures to toxicants in the environment and ASD risk (the first category) because many of the biomarker studies contained small sample sizes and the relationships between biomarkers and ASD were inconsistent across studies. Regarding the third category of studies investigating potential genetic susceptibilities to toxicants, 10 unique studies examined polymorphisms in genes associated with increased susceptibilities to toxicants, with 8 studies reporting that such polymorphisms were more common in ASD individuals (or their mothers, 1 study) compared with controls (one study examined multiple polymorphisms). Genes implicated in these studies included paraoxonase (PON1, three of five...
The scientific literature provides extensive evidence of widespread magnesium deficiency and the potential need for magnesium repletion in diverse medical conditions. Magnesium is an essential element required as a cofactor for over 300 enzymatic reactions and is thus necessary for the biochemical functioning of numerous metabolic pathways. Inadequate magnesium status may impair biochemical processes dependent on sufficiency of this element. Emerging evidence confirms that nearly two-thirds of the population in the western world is not achieving the recommended daily allowance for magnesium, a deficiency problem contributing to various health conditions. This review assesses available medical and scientific literature on health issues related to magnesium. A traditional integrated review format was utilized for this study. Level I evidence supports the use of magnesium in the prevention and treatment of many common health conditions including migraine headache, metabolic syndrome, diabetes, hyperlipidemia, asthma, premenstrual syndrome, preeclampsia, and various cardiac arrhythmias. Magnesium may also be considered for prevention of renal calculi and cataract formation, as an adjunct or treatment for depression, and as a therapeutic intervention for many other health-related disorders. In clinical practice, optimizing magnesium status through diet and supplementation appears to be a safe, useful, and well-documented therapy for several medical conditions.
Background. Bisphenol A (BPA) is an ubiquitous chemical contaminant that has recently been associated with adverse effects on human health. There is incomplete understanding of BPA toxicokinetics, and there are no established interventions to eliminate this compound from the human body. Using 20 study participants, this study was designed to assess the relative concentration of BPA in three body fluids—blood, urine, and sweat—and to determine whether induced sweating may be a therapeutic intervention with potential to facilitate elimination of this compound. Methods. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with assorted health problems) and analyzed for various environmental toxicants including BPA. Results. BPA was found to differing degrees in each of blood, urine, and sweat. In 16 of 20 participants, BPA was identified in sweat, even in some individuals with no BPA detected in their serum or urine samples. Conclusions. Biomonitoring of BPA through blood and/or urine testing may underestimate the total body burden of this potential toxicant. Sweat analysis should be considered as an additional method for monitoring bioaccumulation of BPA in humans. Induced sweating appears to be a potential method for elimination of BPA.
There is limited understanding of the toxicokinetics of bioaccumulated toxic elements and their methods of excretion from the human body. This study was designed to assess the concentration of various toxic elements in three body fluids: blood, urine and sweat. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with various health problems) and analyzed for approximately 120 various compounds, including toxic elements. Toxic elements were found to differing degrees in each of blood, urine, and sweat. Serum levels for most metals and metalloids were comparable with those found in other studies in the scientific literature. Many toxic elements appeared to be preferentially excreted through sweat. Presumably stored in tissues, some toxic elements readily identified in the perspiration of some participants were not found in their serum. Induced sweating appears to be a potential method for elimination of many toxic elements from the human body. Biomonitoring for toxic elements through blood and/or urine testing may underestimate the total body burden of such toxicants. Sweat analysis should be considered as an additional method for monitoring bioaccumulation of toxic elements in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.