We describe here a multiplexed protein quantitation strategy that provides relative and absolute measurements of proteins in complex mixtures. At the core of this methodology is a multiplexed set of isobaric reagents that yield amine-derivatized peptides. The derivatized peptides are indistinguishable in MS, but exhibit intense low-mass MS/MS signature ions that support quantitation. In this study, we have examined the global protein expression of a wild-type yeast strain and the isogenic upf1⌬ and xrn1⌬ mutant strains that are defective in the nonsense-mediated mRNA decay and the general 5 to 3 decay pathways, respectively. We also demonstrate the use of 4-fold multiplexing to enable relative protein measurements simultaneously with determination of absolute levels of a target protein using synthetic isobaric peptide standards. We find that inactivation of Upf1p and Xrn1p causes common as well as unique effects on protein expression. Molecular & Cellular Proteomics 3:1154 -1169, 2004.An initial step in the systematic investigation of cellular processes is the identification and measurement of expression levels of relevant sets of proteins. Recently, quantitative approaches utilizing MS and a host of stable isotope-labeling chemistries have emerged (reviewed in Refs. 1 and 2), offering a departure from traditional techniques employing comparative two-dimensional gel electrophoresis. The ICAT quantitative labeling strategy (3, 4) is perhaps the best-characterized method for relative protein quantitation using MS. Other elegant approaches use cell-culture enrichment with a stable isotope-labeled amino acid, including arginine (5), lysine (6), tyrosine (7), and leucine (8), for in vivo incorporation of a mass difference to support relative quantitation. This circumvents potential difficulties surrounding chemical labeling downstream in a comparative experiment. All of these methods impart a mass difference as the basis for quantitation by measurement of relative peak areas of MS and/or MS/MS mass spectra. There are, however, a number of limitations imposed by mass-difference labeling. The mass-difference concept for many practical purposes is limited to a binary (2-plex) set of reagents, and this makes comparison of multiple states (e.g. several experimental controls or time-course studies) difficult to undertake. Multiple 2-plex datasets can be combined after separate analyses, but there is a high likelihood that different sets of peptides and proteins will be identified between each experiment. In addition, the use of massdifference labels increases MS complexity, and this problem increases with numbers of a multiplexed set. Finally, the cysteine-selective affinity strategy for reduction of sample complexity (ICAT) is not amenable to identification of post-translationally modified peptides, as the majority of posttranslational modification (PTM) 1 -containing peptides are discarded at the affinity step.We have developed a multiplexed set of reagents for quantitative protein analysis that place isobaric mass label...
Biomarkers are needed to assist in the diagnosis and medical management of various neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy body (DLB). We have employed a multiplex quantitative proteomics method, iTRAQ (isobaric Tagging for Relative and Absolute protein Quantification), in conjunction with multidimensional chromatography, followed by tandem mass spectrometry (MS/MS), to simultaneously measure relative changes in the proteome of cerebrospinal fluid (CSF) obtained from patients with AD, PD, and DLB compared to healthy controls. The diagnosis of AD and DLB was confirmed by autopsy, whereas the diagnosis of PD was based on clinical criteria. The proteomic findings showed quantitative changes in AD, PD, and DLB as compared to controls; among more than 1,500 identified CSF proteins, 136, 72, and 101 of the proteins displayed quantitative changes unique to AD, PD, and DLB, respectively. Eight unique proteins were confirmed by Western blot analysis, and the sensitivity at 95% specificity was calculated for each marker alone and in combination. Several panels of unique makers were capable of distinguishing AD, PD and DLB patients from each other as well as from controls with high sensitivity at 95% specificity. Although these preliminary findings must be validated in a larger and different population of patients, they suggest that a roster of proteins may be generated and developed into specific biomarkers that could eventually assist in clinical diagnosis and monitoring disease progression of AD, PD and DLB.
In the bivalve mollusc Mytilus edulis shell thickening occurs from the extrapallial (EP) fluid wherein secreted shell matrix macromolecules are thought to self-assemble into a framework that regulates the growth of CaCO 3 crystals, which eventually constitute ϳ95% of the mature shell. Herein is the initial report on the purification and characterization of a novel EP fluid glycoprotein, which is likely a building block of the shell-soluble organic matrix. This primary EP fluid protein comprises 56% of the total protein in the fluid and is shown to be a dimer of 28,340 Da monomers estimated to be 14.3% by weight carbohydrate. The protein is acidic (pI ؍ 4.43) and rich in histidine content (11.14%) as well as in Asx and Glx residues (25.15% total). The N terminus exhibits an unusual repeat sequence of histidine and aspartate residues that occur in pairs: NPVDDHHDDHH-DAPIVEHHDϳ. Ultracentrifugation and polyacrylamide gel electrophoresis demonstrate that the protein binds calcium and in so doing assembles into a series of higher order protomers, which appear to have extended structures. Circular dichroism shows that the protein-calcium binding/ protomer formation is coupled to a significant rearrangement in the protein's secondary structure in which there is a major reduction in -sheet with an associated increase in ␣-helical content of the protein. A model for shell organic matrix self-assembly is proposed.Biomineralization refers to the biological regulation of inorganic mineral deposition (1-3). Generally, organisms use proteins and polysaccharides to regulate mineralization by affecting the nucleation, growth regulation, and growth cessation of the attendant mineral crystals (4 -9). Typically, mineralization takes place from a fluid medium, which is biologically regulated in its content, supersaturated with the ions being deposited, and spatially separated from its surroundings (10, 11).In the mollusc Mytilus edulis, biomineralization manifests itself in exoskeletal shell formation. As a whole, mollusc shells are 95-99.9% by weight CaCO 3 with the residual mass being composed of biological macromolecules (11,12). The shell of M. edulis is not homogeneous in its spatial distribution of CaCO 3 . Instead, the shell has an outer prismatic and an inner pearllike nacreous layer, which contain CaCO 3 deposited as crystals of calcite and aragonite, respectively. These two mineralized layers are continuous, ultrastructurally unique, and reside one on top of the other along the long axis of the shell (1).Anatomically, the extrapallial (EP) 1 fluid fills the cavity between the most outer visceral organ (the mantle) and the external shell. The EP fluid resides inside of the pallial line (site of mantle attachment near the shell perimeter) and is the medium from which prismatic layer thickening and nacre layer nucleation and growth occur (13-15). The location and contents of the EP fluid implies that it plays an essential role in mineralization/demineralization processes in vivo. Despite this belief, the EP fluid has rece...
BACKGROUND MALDI-TOF mass spectrometry (MS) is set to make inroads into clinical chemistry because it offers advantages over other analytical platforms. These advantages include low acquisition and operating costs, ease of use, ruggedness, and high throughput. When coupled with innovative front-end strategies and applied to important clinical problems, it can deliver rapid, sensitive, and cost-effective assays. CONTENT This review describes the general principles of MALDI-TOF MS, highlights the unique features of the platform, and discusses some practical methods based upon it. There is substantial potential for MALDI-TOF MS to make further inroads into clinical chemistry because of the selectivity of mass detection and its ability to independently quantify proteoforms. SUMMARY MALDI-TOF MS has already transformed the practice of clinical microbiology and this review illustrates how and why it is now set to play an increasingly important role in in vitro diagnostics in particular, and clinical chemistry in general.
Large-scale proteomic analyses frequently rely on high-resolution peptide separation of digested protein mixtures in multiple dimensions to achieve accuracy in sample detection and sensitivity in dynamic range of coverage. This study was undertaken to demonstrate the feasibility of MALDI MS/MS with off-line coupling to HPLC for the analysis of whole cell lysates of wild-type yeast by three different workflows: SCX-RPHPLC-MS/MS, high-pH SAX-RPHPLC-MS/MS and RP (protein)-SCX-RPHPLC-MS/MS. The purpose of these experiments was to demonstrate the effect of a workflow on the end results in terms of the number of proteins detected, the average peptide coverage of proteins, and the number of redundant peptide sequencing attempts. Using 60 microg of yeast lysate, minor differences were seen in the number of proteins detected by each method (800-1200). The most significant differences were observed in redundancy of MS/MS acquisitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.