BackgroundRecent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products.Methods and FindingsWe present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use for the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors.ConclusionOur model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.
Resilience in hospitals - their ability to withstand, adapt to, and rapidly recover from disruptive events - is vital to their role as part of national critical infrastructure. This paper presents a model to provide planning guidance to decision makers about how to make hospitals more resilient against possible disruption scenarios. This model represents a hospital's adaptive capacities that are leveraged to care for patients during loss of infrastructure services (power, water, etc.). The model is an optimization that reallocates and substitutes resources to keep patients in a high care state or allocates resources to allow evacuation if necessary. An illustrative example demonstrates how the model might be used in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.