The Fermi-LAT unassociated sources represent some of the most enigmatic gamma-ray sources in the sky. Observations with the Swift-XRT and -UVOT telescopes have identified hundreds of likely X-ray and UV/optical counterparts in the uncertainty ellipses of the unassociated sources. In this work we present spectral fitting results for 205 possible X-ray/UV/optical counterparts to 4FGL unassociated targets. Assuming that the unassociated sources contain mostly pulsars and blazars, we develop a neural network classifier approach that applies gamma-ray, X-ray, and UV/optical spectral parameters to yield a descriptive classification of unassociated spectra into pulsars and blazars. From our primary sample of 174 Fermi sources with a single X-ray/UV/optical counterpart, we present 132 P bzr > 0.99 likely blazars and 14 P bzr < 0.01 likely pulsars, with 28 remaining ambiguous. These subsets of the unassociated sources suggest a systematic expansion to catalogs of gamma-ray pulsars and blazars. Compared to previous classification approaches our neural network classifier achieves significantly higher validation accuracy and returns more bifurcated P bzr values, suggesting that multiwavelength analysis is a valuable tool for confident classification of Fermi unassociated sources.
We conduct X-ray spectral fits on 184 likely counterparts to Fermi-LAT 3FGL unassociated sources. Characterization and classification of these sources allows for more complete population studies of the high-energy sky. Most of these X-ray spectra are well fit by an absorbed power-law model, as expected for a population dominated by blazars and pulsars. A small subset of seven X-ray sources have spectra unlike the power law expected from a blazar or pulsar and may be linked to coincident stars or background emission. We develop a multiwavelength machine learning classifier to categorize unassociated sources into pulsars and blazars using gamma-ray and X-ray observations. Training a random forest (RF) procedure with known pulsars and blazars, we achieve a cross-validated classification accuracy of 98.6%. Applying the RF routine to the unassociated sources returned 126 likely blazar candidates (defined as P bzr ≥ 90%) and five likely pulsar candidates (P bzr ≤ 10%). Our new X-ray spectral analysis does not drastically alter the RF classifications of these sources compared to previous works, but it builds a more robust classification scheme and highlights the importance of X-ray spectral fitting. Our procedure can be further expanded with UV, visual, or radio spectral parameters or by measuring flux variability.
We investigate a conceptual modification of the halo occupation distribution approach, using the halos' present-day maximal circular velocity, V max , as an alternative to halo mass. In particular, using a semi-analytic galaxy formation model applied to the Millennium WMAP7 simulation, we explore the extent that switching to V max as the primary halo property incorporates the effects of assembly bias into the formalism. We consider fixed number density galaxy samples ranked by stellar mass and examine the variations in the halo occupation functions with either halo concentration or formation time. We find that using V max results in a significant reduction in the occupancy variation of the central galaxies, particularly for concentration. The satellites occupancy variation on the other hand increases in all cases. We find effectively no change in the halo clustering dependence on concentration, for fixed bins of V max compared to fixed halo mass. Most crucially, we calculate the impact of assembly bias on galaxy clustering by comparing the amplitude of clustering to that of a shuffled galaxy sample, finding that the level of galaxy assembly bias remains largely unchanged. Our results suggest that while using V max as a proxy for halo mass diminishes some of occupancy variations exhibited in the galaxy-halo relation, it is not able to encapsulate the effects of assembly bias potentially present in galaxy clustering. The use of other more complex halo properties, such as V peak , the peak value of V max over the assembly history, provides some improvement and warrants further investigation.
Several recent works have proposed a “stellar relay” transmission system in which a spacecraft at the focus of a star’s gravitational lens achieves dramatic boosts in the gain of an outgoing or incoming interstellar transmission. We examine some of the engineering requirements of a stellar relay system, evaluate the long-term sustainability of a gravitational relay, and describe the perturbations and drifts that must be actively countered to maintain a relay-star-target alignment. The major perturbations on a relay-Sun-target alignment are the inwards gravity of the Sun and the reflex motion of the Sun imparted by the planets. These ∼m s−1 yr−1 accelerations can be countered with modern propulsion systems over century-long timescales. This examination is also relevant for telescope designs aiming to use the Sun as a focusing element. We additionally examine prospects for an artifact SETI search to observe stellar relays placed around the Sun by an extraterrestrial intelligence and suggest certain nearby stars that are relatively unperturbed by planetary systems as favorable nodes for a stellar relay communications system.
Stars provide an enormous gain for interstellar communications at their gravitational focus, perhaps as part of an interstellar network. If the Sun is part of such a network, there should be probes at the gravitational foci of nearby stars. If there are probes within the solar system connected to such a network, we might detect them by intercepting transmissions from relays at these foci. Here, we demonstrate a search across a wide bandwidth for interstellar communication relays beyond the Sun’s innermost gravitational focus at 550 au using the Green Bank Telescope (GBT) and Breakthrough Listen (BL) backend. As a first target, we searched for a relay at the focus of the Alpha Centauri AB system while correcting for the parallax due to Earth’s orbit around the Sun. We searched for radio signals directed at the inner solar system from such a source in the L and S bands. Our analysis, utilizing the turboSETI software developed by BL, did not detect any signal indicative of a non-human-made artificial origin. Further analysis excluded false negatives and signals from the nearby target HD 13908. Assuming a conservative gain of 103 in the L band and roughly 4 times that in the S band, a ∼1 m directed transmitter would be detectable by our search above 7 W at 550 au or 23 W at 1000 au in the L band, and above 2 W at 550 au or 7 W at 1000 au in the S band. Finally, we discuss the application of this method to other frequencies and targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.