PTEN is a tumor suppressor gene frequently mutated in human cancers. In vitro and in vivo studies have shown that PTEN can exert its tumor suppressive function through a variety of mechanisms, including regulation of cell death and cell proliferation. However, it is still unclear which of the many downstream pathways are critical in each different tissue, in vivo. Loss of PTEN is the earliest detectable genetic lesion in the estrogen-related type I (endometrioid) endometrial cancer. Pten +/À mice develop endometrial neoplastic lesions with full penetrance, thus providing a model system to dissect the genetic and biochemical events leading to the transition from normal to hyperplastic and neoplastic endometrial epithelium. Here, we show that loss of Pten in the mouse endometrium activates Akt and results in increased phosphorylation of estrogen receptor A (ERA) on Ser 167 . ERA phosphorylation results, in turn, in the activation of this nuclear receptor both in vivo and in vitro, even in the absence of ligand, and in its increased ability to activate the transcription of several of its target genes. Strikingly, reduction of endometrial ERA levels and activity dramatically reduces the neoplastic effect of Pten loss in the endometrium, in contrast to complete estrogen depletion. Thus, we provide for the first time in vivo evidence supporting the hypothesis that loss of Pten and subsequent Akt activation result in the activation of ERA-dependent pathways that play a pivotal role in the neoplastic process. (Cancer Res 2006; 66(7): 3375-80)
Despite its involvement in most human cancers, MYC continues to pose a challenge as a readily tractable therapeutic target. Here we identify the MYC transcriptional cofactors TIP48 and TIP49 and MYC as novel binding partners of MTBP, a functionally undefined protein that we show is oncogenic and overexpressed in many human cancers. MTBP associated with MYC at promoters and increased MYC-mediated transcription, proliferation, neoplastic transformation and tumor development. In breast cancer specimens, we determined overexpression of both MYC and MTBP was associated with a reduction in 10-year patient survival compared to MYC overexpression alone. MTBP was also frequently co-amplified with MYC in many human cancers. Mechanistic investigations implicated associations with TIP48/TIP49 as well as MYC in MTBP function in cellular transformation and the growth of human breast cancer cells. Taken together, our findings show MTBP functions with MYC to promote malignancy, identifying this protein as a novel general therapeutic target in human cancer.
UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the Nterminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the subcellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-
cBoth cyclin D1 and the transcription factor C/EBP are required for mammary epithelial cell differentiation; however, the pathway in which they operate is uncertain. Previous analyses of the patterns of gene expression in human tumors suggested a connection between cyclin D1 overexpression and C/EBP, but whether this represents a cancer-specific gain of function for cyclin D1 is unknown. C/EBP is an intronless gene encoding three protein isoforms-LAP1, LAP2, and LIP. Here, we provide evidence that cyclin D1 engages C/EBP in an isoform-specific manner. Cyclin D1 binds to LAP1, an event that activates the transcriptional function of LAP1 by relieving its autoinhibited state effected by intramolecular interactions. Reexpression of LAP1 but not LAP2 or LIP restores the ability of C/EBP-deficient mammary epithelial cells to differentiate and does so in a manner dependent on cyclin D1. And cyclin D1-mediated activation of LAP1 participates in mammary epithelial cell differentiation. Our findings indicate that cyclin D1 and C/EBP LAP1 operate in a common pathway to promote mammary epithelial cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.