We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries. T he lack of reproducibility of scientific studies has caused growing concern over the credibility of claims of new discoveries based on 'statistically significant' findings. There has been much progress toward documenting and addressing several causes of this lack of reproducibility (for example, multiple testing, P-hacking, publication bias and under-powered studies). However, we believe that a leading cause of non-reproducibility has not yet been adequately addressed: statistical standards of evidence for claiming new discoveries in many fields of science are simply too low. Associating statistically significant findings with P < 0.05 results in a high rate of false positives even in the absence of other experimental, procedural and reporting problems.For fields where the threshold for defining statistical significance for new discoveries is P < 0.05, we propose a change to P < 0.005. This simple step would immediately improve the reproducibility of scientific research in many fields. Results that would currently be called significant but do not meet the new threshold should instead be called suggestive. While statisticians have known the relative weakness of using P ≈ 0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new 1,2 , a critical mass of researchers now endorse this change.We restrict our recommendation to claims of discovery of new effects. We do not address the appropriate threshold for confirmatory or contradictory replications of existing claims. We also do not advocate changes to discovery thresholds in fields that have already adopted more stringent standards (for example, genomics and high-energy physics research; see the 'Potential objections' section below).We also restrict our recommendation to studies that conduct null hypothesis significance tests. We have diverse views about how best to improve reproducibility, and many of us believe that other ways of summarizing the data, such as Bayes factors or other posterior summaries based on clearly articulated model assumptions, are preferable to P values. However, changing the P value threshold is simple, aligns with the training undertaken by many researchers, and might quickly achieve broad acceptance.
When experimental designs are infeasible, researchers must resort to the use of observational data from surveys, censuses, and administrative records. Because assignment to the independent variables of observational data is usually nonrandom, the challenge of estimating causal effects with observational data can be formidable. In this chapter, we review the large literature produced primarily by statisticians and econometricians in the past two decades on the estimation of causal effects from observational data. We first review the now widely accepted counterfactual framework for the modeling of causal effects. After examining estimators, both old and new, that can be used to estimate causal effects from cross-sectional data, we present estimators that exploit the additional information furnished by longitudinal data. Because of the size and technical nature of the literature, we cannot offer a fully detailed and comprehensive presentation. Instead, we present only the main features of methods that are accessible and potentially of use to quantitatively oriented sociologists.
In this second edition of Counterfactuals and Causal Inference, completely revised and expanded, the essential features of the counterfactual approach to observational data analysis are presented with examples from the social, demographic, and health sciences. Alternative estimation techniques are first introduced using both the potential outcome model and causal graphs; after which, conditioning techniques, such as matching and regression, are presented from a potential outcomes perspective. For research scenarios in which important determinants of causal exposure are unobserved, alternative techniques, such as instrumental variable estimators, longitudinal methods, and estimation via causal mechanisms, are then presented. The importance of causal effect heterogeneity is stressed throughout the book, and the need for deep causal explanation via mechanisms is discussed.
Did mandatory busing programs in the 1970s increase the school achievement of disadvantaged minority youth? Does obtaining a college degree increase an individual's labor market earnings? Did the use of the butterfly ballot in some Florida counties in the 2000 presidential election cost Al Gore votes? If so, was the number of miscast votes sufficiently large to have altered the election outcome? At their core, these types of questions are simple cause-and-effect questions. Simple cause-and-effect questions are the motivation for much empirical work in the social sciences. This book presents a model and set of methods for causal effect estimation that social scientists can use to address causal questions such as these. The essential features of the counterfactual model of causality for observational data analysis are presented with examples from sociology, political science, and economics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.