Raman spectroscopy is a vibrational spectroscopic technique that can be used to optically probe the molecular changes associated with diseased tissues. The objective of our study was to explore near-infrared (NIR) Raman spectroscopy for distinguishing tumor from normal bronchial tissue. Bronchial tissue specimens (12 normal, 10 squamous cell carcinoma (SCC) and 6 adenocarcinoma) were obtained from 10 patients with known or suspected malignancies of the lung. A rapid-acquisition dispersive-type NIR Raman spectroscopy system was used for tissue Raman studies at 785 nm excitation. High-quality Raman spectra in the 700 -1,800 cm -1 range from human bronchial tissues in vitro could be obtained within 5 sec. Raman spectra differed significantly between normal and malignant tumor tissue, with tumors showing higher percentage signals for nucleic acid, tryptophan and phenylalanine and lower percentage signals for phospholipids, proline and valine, compared to normal tissue. Raman spectral shape differences between normal and tumor tissue were also observed particularly in the spectral ranges of 1,000 -1,100, 1,200 -1,400 and 1,500 -1
Lung cancer is the leading cause of cancer death worldwide, and adenocarcinoma is its most common histological subtype. Clinical and molecular evidence indicates that lung adenocarcinoma is a heterogeneous disease, which has important implications for treatment. Here we performed genome-scale DNA methylation profiling using the Illumina Infinium HumanMethylation27 platform on 59 matched lung adenocarcinoma/non-tumor lung pairs, with genome-scale verification on an independent set of tissues. We identified 766 genes showing altered DNA methylation between tumors and non-tumor lung. By integrating DNA methylation and mRNA expression data, we identified 164 hypermethylated genes showing concurrent down-regulation, and 57 hypomethylated genes showing increased expression. Integrated pathways analysis indicates that these genes are involved in cell differentiation, epithelial to mesenchymal transition, RAS and WNT signaling pathways, and cell cycle regulation, among others. Comparison of DNA methylation profiles between lung adenocarcinomas of current and never-smokers showed modest differences, identifying only LGALS4 as significantly hypermethylated and down-regulated in smokers.LGALS4, encoding a galactoside-binding protein involved in cell-cell and cell-matrix interactions, was recently shown to be a tumor suppressor in colorectal cancer. Unsupervised analysis of the DNA methylation data identified two tumor subgroups, one of which showed increased DNA methylation and was significantly associated with KRAS mutation and to a lesser extent, with smoking. Our analysis lays the groundwork for further molecular studies of lung adenocarcinoma by identifying novel epigenetically deregulated genes potentially involved in lung adenocarcinoma development/progression, and by describing an epigenetic subgroup of lung adenocarcinoma associated with characteristic molecular alterations.
Once thought to be a part of the ‘dark matter’ of the genome, long non-coding RNAs (lncRNAs) are emerging as an integral functional component of the mammalian transcriptome. LncRNAs are a novel class of mRNA-like transcripts which, despite no known protein-coding potential, demonstrate a wide range of structural and functional roles in cellular biology. However, the magnitude of the contribution of lncRNA expression to normal human tissues and cancers has not been investigated in a comprehensive manner. In this study, we compiled 272 human serial analysis of gene expression (SAGE) libraries to delineate lncRNA transcription patterns across a broad spectrum of normal human tissues and cancers. Using a novel lncRNA discovery pipeline we parsed over 24 million SAGE tags and report lncRNA expression profiles across a panel of 26 different normal human tissues and 19 human cancers. Our findings show extensive, tissue-specific lncRNA expression in normal tissues and highly aberrant lncRNA expression in human cancers. Here, we present a first generation atlas for lncRNA profiling in cancer.
In vivo autofluorescence spectra were obtained in 5 patients with carcinoma in situ, 26 patients with invasive tumors, and 1 patient with severe dysplasia. Significant spectral differences were observed between pre-cancerous, cancerous, and normal bronchial tissues. This difference may afford a method to image and/or detect early lung cancer by using tissue autofluorescence alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.