Genetic changes similar to those found in lung cancers can be detected in the nonmalignant bronchial epithelium of current and former smokers and may persist for many years after smoking cessation.
BackgroundActivating mutations in one allele of an oncogene (heterozygous mutations) are widely believed to be sufficient for tumorigenesis. However, mutant allele specific imbalance (MASI) has been observed in tumors and cell lines harboring mutations of oncogenes.Methodology/Principal FindingsWe determined 1) mutational status, 2) copy number gains (CNGs) and 3) relative ratio between mutant and wild type alleles of KRAS, BRAF, PIK3CA and EGFR genes by direct sequencing and quantitative PCR assay in over 400 human tumors, cell lines, and xenografts of lung, colorectal, and pancreatic cancers. Examination of a public database indicated that homozygous mutations of five oncogenes were frequent (20%) in 833 cell lines of 12 tumor types. Our data indicated two major forms of MASI: 1) MASI with CNG, either complete or partial; and 2) MASI without CNG (uniparental disomy; UPD), due to complete loss of wild type allele. MASI was a frequent event in mutant EGFR (75%) and was due mainly to CNGs, while MASI, also frequent in mutant KRAS (58%), was mainly due to UPD. Mutant: wild type allelic ratios at the genomic level were precisely maintained after transcription. KRAS mutations or CNGs were significantly associated with increased ras GTPase activity, as measured by ELISA, and the two molecular changes were synergistic. Of 237 lung adenocarcinoma tumors, the small number with both KRAS mutation and CNG were associated with shortened survival.ConclusionsMASI is frequently present in mutant EGFR and KRAS tumor cells, and is associated with increased mutant allele transcription and gene activity. The frequent finding of mutations, CNGs and MASI occurring together in tumor cells indicates that these three genetic alterations, acting together, may have a greater role in the development or maintenance of the malignant phenotype than any individual alteration.
Lung cancer is the leading cause of cancer death worldwide, accounting for more deaths than breast, prostate and colon cancer combined. While treatment decisions are determined primarily by stage, therapeutically non small cell lung cancer (NSCLC) has traditionally been treated as a single disease. However, recent findings have led to the recognition of histology and molecular subtypes as important determinants in treatment selection. Identifying the genetic differences that define these molecular and histological subtypes has the potential to impact treatment and as such is currently the focus of much research. Microarray and genomic sequencing efforts have provided unparalleled insight into the genomes of lung cancer subtypes, specifically adenocarcinoma (AC) and squamous cell carcinoma (SqCC), revealing subtype specific genomic alterations and molecular subtypes as well as differences in cell signaling pathways. In this review, we discuss the recurrent genomic alterations characteristic of AC and SqCC (including molecular subtypes), their therapeutic implications and emerging clinical practices aimed at tailoring treatments based on a tumor's molecular alterations with the hope of improving patient response and survival.
Somatic mutations and copy number alterations (as a result of deletion or amplification of large portions of a chromosome) are major drivers of human lung cancers. Detailed analysis of lung cancer-associated chromosomal amplifications could identify novel oncogenes. By performing an integrative cytogenetic and gene expression analysis of non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) cell lines and tumors, we report here the identification of a frequently recurring amplification at chromosome 11 band p13. Within this region, only TNF receptor-associated factor 6 (TRAF6) exhibited concomitant mRNA overexpression and gene amplification in lung cancers. Inhibition of TRAF6 in human lung cancer cell lines suppressed NF-κB activation, anchorage-independent growth, and tumor formation. In these lung cancer cell lines, RAS required TRAF6 for its oncogenic capabilities. Furthermore, TRAF6 overexpression in NIH3T3 cells resulted in NF-κB activation, anchorage-independent growth, and tumor formation. Our findings show that TRAF6 is an oncogene that is important for RAS-mediated oncogenesis and provide a mechanistic explanation for the previously apparent importance of constitutive NF-κB activation in RAS-driven lung cancers.
William Lockwood and colleagues show that the focal amplification of a gene, BRF2, on Chromosome 8p12 plays a key role in squamous cell carcinoma of the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.