Story generation is the problem of automatically selecting a sequence of events that meet a set of criteria and can be told as a story. Story generation is knowledge-intensive; traditional story generators rely on a priori defined domain models about fictional worlds, including characters, places, and actions that can be performed. Manually authoring the domain models is costly and thus not scalable. We present a novel class of story generation system that can generate stories in an unknown domain. Our system (a) automatically learns a domain model by crowdsourcing a corpus of narrative examples and (b) generates stories by sampling from the space defined by the domain model. A large-scale evaluation shows that stories generated by our system for a previously unknown topic are comparable in quality to simple stories authored by untrained humans
Abstract. This paper presents CBRetaliate, an agent that combines Case-Based Reasoning (CBR) and Reinforcement Learning (RL) algorithms. Unlike most previous work where RL is used to improve accuracy in the action selection process, CBRetaliate uses CBR to allow RL to respond more quickly to changing conditions. CBRetaliate combines two key features: it uses a time window to compute similarity and stores and reuses complete Q-tables for continuous problem solving. We demonstrate CBRetaliate on a team-based first-person shooter game, where our combined CBR+RL approach adapts quicker to changing tactics by an opponent than standalone RL.
In this paper we explore the use of Hierarchical-Task-Network (HTN) representations to model strategic game AI. We will present two case studies. The first one reports on an experiment using HTNs to model strategies for Unreal Tournament® (UT) bots. We will argue that it is possible to encode strategies that coordinate teams of bots in first-person shooter games using HTNs. The second one compares an alternative to HTNs called Task-Method-Knowledge (TMK) process models. TMK models are of interest to game AI because, as we will show, they are as expressive as HTNs but have more convenient syntax. Therefore, HTN planners can be used to generate correct plans for coordinated team AI behavior modeled with TMK representations.
Abstract. In this paper we study the topic of CBR systems learning from observations in which those observations can be represented as stochastic policies. We describe a general framework which encompasses three steps: (1) it observes agents performing actions, elicits stochastic policies representing the agents' strategies and retains these policies as cases. (2) The agent analyzes the environment and retrieves a suitable stochastic policy. (3) The agent then executes the retrieved stochastic policy, which results in the agent mimicking the previously observed agent. We implement our framework in a system called JuKeCB that observes and mimics players playing games. We present the results of three sets of experiments designed to evaluate our framework. The first experiment demonstrates that JuKeCB performs well when trained against a variety of fixed strategy opponents. The second experiment demonstrates that JuKeCB can also, after training, win against an opponent with a dynamic strategy. The final experiment demonstrates that JuKeCB can win against "new" opponents (i.e. opponents against which JuKeCB is untrained).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.