The segregation of granitic magma from residual crystals at low melt-fraction is strongly dependent on the viscosity of the melt. Theoretical considerations imply that for the typical range of granitic melt viscosities (10 4 Pas to 10 11 Pas) only very limited separation will be possible by a compaction mechanism over the typical duration of a crustal melting event ( c . 10 6 years). Small-scale segregations (millimetre to metre) of the type observed in migmatite terranes may be generated by compaction (possibly assisted by continuous deformation), or by flow of melt into extensional fractures, but low melt-fraction liquids are unlikely to be extracted to form large (kilometre-size) granitic plutons because of the limited separation efficiency. At higher melt-fractions (>30%) the rapid decrease in strength and effective viscosity during partial melting allows other segregation processes to operate. Calculations and experiments indicate that in granitic systems the effective viscosity of partially melted rocks, having a very narrow melt fraction range of 30–50% will fall rapidly to levels at which convective overturn of kilometre-thick zones can occur. Convective motion within anatectic regions is capable of generating large (kilometre-size) homogeneous, high crystal-fraction, crustally-derived magma bodies, which are orders of magnitude greater in size than low melt-fraction segregates. Before convective instability is reached, small (centimetre- to metre-sized) pods of granitic liquid may rise buoyantly through, and pond at the top of such partly molten zones; such a process is consistent with the observation that some granulites appear to be residue rocks, chemically depleted in a minimum melt component. The effective viscosity (and hence the susceptibility to convection) of a partially melted zone within the crust, is strongly dependent on the water content of the system at a given pressure and temperature, because this controls both the quantity of melt generated and also the viscosity of the melt. The intrinsic water content of most crustal lithologies is incapable of promoting the high percentages of partial melting, or the low liquid viscosities, required to form large kilometre-sized granitic plutons by convective homogenization, at typical crustal temperatures. This suggests that the anatexis involved in the generation of large crustally-derived magma bodies has in many cases been promoted by an influx of externally derived aqueous fluid. These magma segregation processes are illustrated with respect to the petrogenesis of three different types of granitoid pluton from a Hercynian low-pressure, metamorphic-anatectic terrane in the Pyrenees.
Stable isotope analyses of rocks and minerals associated with the detachment fault and underlying mylonite zone exposed at Secret Creek gorge and other localities in the Ruby-East Humboldt Range metamorphic core complex in northeastern Nevada provide convincing evidence for meteoric water infiltration during mylonitization. Whole-rock 6180 values of the lower plate quartzite mylonites (>95% modal quartz) have been lowered by up to 10 per rail compared with structurally lower, compositionally similar, unmylonitized material. Biotite from these rocks has 6D values ranging from-125 to-175, compared to values of-55 to-70 in biotite from unmylonitized rocks. Mylonitized leucogranites have large disequilibrium oxygen isotope fractionations (Aquartz_felaspa r up to "-,8 per mil) relative to magmatic values (Aquartz_feldspa r ~ 1 to 2 per mil). Meteoric water is the only major oxygen and hydrogen reservoir with an isotopic composition capable of generating the observed values. Fluid inclusion water from unstrained quartz in silicified breccia has a 6D value of-119 which provides a plausible estimate of the 6D of the infiltrating fluid, and is similar to the isotopic composition of present-day and Tertiary local meteoric water. The quartzite mylonite biotites would have been in equilibrium with such a fluid at temperatures of 480-620 ~ C, similar to independent estimates of the temperature of mylonitization. The relatively high temperatures required for isotopic exchange between quartz and water, the occurrence of fluid inclusion trails and deformed veins in quartzite mylonites, and the spatial association of the low-180, low-D rocks with the shear zone all constrain isotopic exchange to the mylonitic (plastic) deformation event. These observations suggest that a significant amount of meteoric water infiltrated the shear zone during mylonitization to depths of at least 5 to 10 km below the surface. The depth of penetration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.