The object of this study was to determine whether interspecific competition modified local geographic distribution, after taking into account the effect of habitat structure. The tendencies for 14 passerine birds to have positive or negative associations were examined, using 7861 sample points in seven native forests on the islands of Hawaii, Maui, and Kauai. All birds were at least partly insectivorous and were fairly common in forested areas, although some fed chiefly on nectar or fruit. Species-pairs were classified as primary or secondary potential competitors based on general dietary similarity.To evaluate the association between species and to account for the effect of individual species' habitat preferences, partial correlations were computed for each species-pair in a study area from the simple correlations between the species and 26 habitat variables plus two quadratic terms to represent nonlinearity. The partial correlations represented a short-term ("instantaneous") assessment of the strength of competitive interactions, and did not reflect the accumulation of competitive displacement through time. Of 170 partial correlations in the analysis, only I 0 indicated significant negative association. The general pattern was of positive association (76 significantly positive partials), which probably resulted from flocking and from attraction of birds to areas of resource superabundance. Two species-pairs showed consistent patterns of negative partial correlations over several adjacent study areas, the Japanese White-eye/Iiwi in montane Hawaii, and the Japanese White-eye/Elepaio in windward Hawaii; both patterns could be reasonably attributed to direct competition.Species-pairs were grouped by the native or exotic status of the component species. Native/exotic pairs had a significantly greater proportion of negative partial correlations (37%) than either native/ native pairs (8%) or exotic/exotic pairs (0%). This pattern was consistent across the seven study areas and appeared to reflect the occurrence of interspecific competition along a broad and diffuse ecological "front" between a co-evolved native avifauna and recently introduced exotic species. The role of competition in the pattern was corroborated by the significantly higher proportion of negative partial correlations among species-pairs of primary potential competitors than among those of secondary potential competitors. Our results suggested that "='47% of the primary potential competitors among native/exotic species-pairs may experience at least small depressions in local population density due to competition. Although the negative correlations were for the most part small (average negative r = 0.06), one species could eventually replace another as spatial displacement accumulated through time. The Japanese White-eye appeared to have a principal role in native/exotic interactions, with 62% of the partial correlations between it and native primary potential competitor species being negative. Noteworthy implications were that (I) it was important to ...
We studied the distribution, population size, and habitat response of the Palila (Loxioides bailleui) during the 1980-1984 nonbreeding seasons to infer factors that limit the population and to develop management strategies. Distribution was fairly constant from year to year. Palila were confined to the subalpine woodland on Mauna Kea on the island of Hawaii, occurred between 2,000 and 2,850 m elevation, and reached highest densities on the southwest slopes. The population showed large annual fluctuations, from 6,400 birds in 1981 to 2,000 in 1984. The width of woodland was the most important variable in determining habitat response. Palila were more common in areas with greater crown cover, taller trees, and a higher proportion of native plants in the understory. Annual variation in Palila density within a habitat reflected variation in levels of their staple food, mamane pods. The main limiting factors of the population appeared to be the availability of good habitat and levels of their staple food. Palila had strongly depressed densities in the Pohakuloa flats area. This low density could not be explained by gross habitat features or food levels. Site tenacity, thermal stress, disturbance, and disease were hypothesized explanations. Our study indicated that the most effective management strategies would be the removal of feral ungulates and certain noxious plants from Palila habitat and the extension of the woodland zone to areas now intensively grazed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.