Tissue regeneration is a medical challenge faced in injury from disease and during medical treatments such as bone marrow transplantation. Prostaglandin PGE2, which supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. SW033291 also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. These findings raise the possibility that inhibiting 15-PGDH could be a useful therapeutic strategy in several distinct clinical settings.
Cancer cells often require glutamine for growth, thereby distinguishing them from most normal cells. Here we show that PIK3CA mutations reprogram glutamine metabolism by upregulating glutamate pyruvate transaminase 2 (GPT2) in colorectal cancer (CRC) cells, making them more dependent on glutamine. Compared with isogenic wild-type (WT) cells, PIK3CA mutant CRCs convert substantially more glutamine to α-ketoglutarate to replenish the tricarboxylic acid cycle and generate ATP. Mutant p110α upregulates GPT2 gene expression through an AKT-independent, PDK1–RSK2–ATF4 signalling axis. Moreover, aminooxyacetate, which inhibits the enzymatic activity of aminotransferases including GPT2, suppresses xenograft tumour growth of CRCs with PIK3CA mutations, but not with WT PIK3CA. Together, these data establish oncogenic PIK3CA mutations as a cause of glutamine dependency in CRCs and suggest that targeting glutamine metabolism may be an effective approach to treat CRC patients harbouring PIK3CA mutations.
The spectrum of mutations induced by the naturally occurring DNA adduct pyrimido[1,2-␣]purin-10(3H)-one (M 1 G) was determined by site-specific approaches using M13 vectors replicated in Escherichia coli.
Pharmacologic inhibitors of the prostaglandin-synthesizing COX-2 oncogene prevent the development of premalignant human colon adenomas. However, resistance to treatment is common. In this study, we show that the adenoma prevention activity of the COX-2 inhibitor celecoxib requires the concomitant presence of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) tumor suppressor gene, and that loss of 15-PGDH expression imparts resistance to celecoxib's anti-tumor effects. We first demonstrate that the adenoma-preventive activity of celecoxib is abrogated in mice genetically lacking 15-PGDH. In FVB mice, celecoxib prevents 85% of azoxymethane-induced tumors >1 mm in size, but is essentially inactive in preventing tumor induction in 15-PGDH-null animals. Indeed, celecoxib treated 15-PGDH null animals develop more tumors than do celecoxib naive WT mice. In parallel with the loss of tumor prevention activity, celecoxib-mediated suppression of colonic PGE2 levels is also markedly attenuated in 15-PGDH-null versus WT mice. Finally, as predicted by the murine models, humans with low colonic 15-PGDH levels also exhibit celecoxib resistance. Specifically, in a colon adenoma prevention trial, in all cases tested, individuals who developed new adenomas while receiving celecoxib treatment were also found as having low colonic 15-PGDH levels.colon cancer ͉ 15-PGDH C olon cancer is the second leading cause of cancer-related death in the United States (1). Strategies for preventing colon cancer have focused on preventing development of colonic adenomas, the pre-malignant tumors that are the precursors of invasive colon cancers (1). Pharmacologic approaches have targeted the inhibition of COX-2, an enzyme that mediates conversion of arachidonic acid to bioactive prostaglandins (PGs), and whose expression is markedly increased in colon cancers (1, 2). Celecoxib, a potent COX-2 inhibitor, decreases colon adenoma development in individuals with familial adenomatous polyposis (3). In individuals with non-familial sporadic colon adenomas, celecoxib reduces by 33%-45% the risk of developing future adenomas, and by 57%-64% the risk of developing adenomas with advanced histology (4, 5). Nonetheless, a significant proportion of individuals exhibit resistance to the colon tumor prevention activity of celecoxib.Recently, we described that 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a PG-degrading enzyme, functions as an endogenous inhibitor of the colonic COX-2 pathway and as a colon tumor suppressor gene (6, 7). 15-PGDH is highly expressed in normal colon mucosa, but expression is ubiquitously lost in human colon cancers (6,8). Knocking out the murine 15-PGDH gene markedly sensitizes normally resistant C57BL/6J mice to colon tumor induction by the carcinogen azoxymethane (AOM) (7). In this study, we examined the potential interactions between pharmacologic regulation of colonic PGs by celecoxib and the genetic regulation of colonic PGs by 15-PGDH, and the potential that loss of 15-PGDH as an interacting partner could provide a resista...
Smad4 is a tumor suppressor gene that is commonly lost or mutated in colorectal and pancreatic cancers. The activated transforming growth factor-beta (TGF-beta) receptor phosphorylates Smad2 and Smad3, which then complex with Smad4 and translocate to the nucleus. Smad4 mutations when detected as present in some human cancers have been considered sufficient to inactivate TGF-beta signaling. In this work, we describe a colon cancer cell line, VACO-9M, that is Smad4 null when analysed by multiple assays. To study the role of Smad4 in TGF-beta-induced translocation of the receptor-activated Smads to the nucleus, we analysed by immunofluorescence the cellular localization of endogenous Smad2 and Smad3 after TGF-beta treatment of VACO-9M, plus four additional Smad4 null cell lines of breast (MDA-MB-468), or pancreatic (BxPC3, Hs766T, CFPAC-1) origin. In each cell line, TGF-beta treatment resulted in both Smad2 and Smad3 moving to the nucleus in a Smad4-independent fashion. Nuclear translocation of Smad2 and Smad3 was, however, not sufficient to activate reporters for TGF-beta-induced transcriptional responses, which were however restored by transient transfection of wild-type Smad4. We conclude that Smad4 is not required for nuclear translocation of Smad2 and Smad3, but is needed for activation of at least certain transcriptional responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.