Tissue regeneration is a medical challenge faced in injury from disease and during medical treatments such as bone marrow transplantation. Prostaglandin PGE2, which supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. SW033291 also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. These findings raise the possibility that inhibiting 15-PGDH could be a useful therapeutic strategy in several distinct clinical settings.
Smad4 is a tumor suppressor gene that is commonly lost or mutated in colorectal and pancreatic cancers. The activated transforming growth factor-beta (TGF-beta) receptor phosphorylates Smad2 and Smad3, which then complex with Smad4 and translocate to the nucleus. Smad4 mutations when detected as present in some human cancers have been considered sufficient to inactivate TGF-beta signaling. In this work, we describe a colon cancer cell line, VACO-9M, that is Smad4 null when analysed by multiple assays. To study the role of Smad4 in TGF-beta-induced translocation of the receptor-activated Smads to the nucleus, we analysed by immunofluorescence the cellular localization of endogenous Smad2 and Smad3 after TGF-beta treatment of VACO-9M, plus four additional Smad4 null cell lines of breast (MDA-MB-468), or pancreatic (BxPC3, Hs766T, CFPAC-1) origin. In each cell line, TGF-beta treatment resulted in both Smad2 and Smad3 moving to the nucleus in a Smad4-independent fashion. Nuclear translocation of Smad2 and Smad3 was, however, not sufficient to activate reporters for TGF-beta-induced transcriptional responses, which were however restored by transient transfection of wild-type Smad4. We conclude that Smad4 is not required for nuclear translocation of Smad2 and Smad3, but is needed for activation of at least certain transcriptional responses.
Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target.
Primary cutaneous CD30+ large cell lymphoma is an unusual tumor most commonly seen in adults. Most of these lymphomas are of T-cell origin and carry a good prognosis. We present the case of a 4-year-old girl with stage IEA CD30+ large cell lymphoma with a CD56+ natural killer cell phenotype and the t(2;5)(p23;q35) translocation. After excision, the patient has been free of disease for 44 months. Primary cutaneous CD30+ large cell lymphoma is uncommon in children. To our knowledge, primary cutaneous CD30+ natural killer type lymphoma has not been reported previously. The indolent behavior of this tumor indicates its similarity to other primary cutaneous CD30+ large cell lymphomas and its difference from other CD56+ lymphomas involving the skin, which often exhibit an aggressive clinical course. Cases such as this one illustrate why the use of a single, or even a few, immunohistochemical stains can be misleading in regard to lymphoma classification and prognostication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.