The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects like the optical enhancement of superconductivity 1 . Recently, nonlinear excitation 2 , 3 of certain phonons in bilayer cuprates was shown to induce superconducting-like optical properties at temperatures far above T c 4,5,6 . This effect was accompanied by the disruption of competing charge-density-wave correlations 7,8 , which explained some but not all of the experimental results. Here, we report a similar phenomenon in a very different compound. By exciting metallic K 3 C 60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. Strikingly, these sameReprints and permissions information is available online at www.nature.com/reprints.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#termsCorrespondence and request for materials should be addressed to An.C. (andrea.cavalleri@mpsd.mpg.de).
Author Contributions
We propose an experimental scheme to verify the quantum nonequilibrium fluctuation relations using current technology. Specifically, we show that the characteristic function of the work distribution for a nonequilibrium quench of a general quantum system can be extracted by Ramsey interferometry of a single probe qubit. Our scheme paves the way for the full characterization of nonequilibrium processes in a variety of quantum systems, ranging from single particles to many-body atomic systems and spin chains. We demonstrate our idea using a time-dependent quench of the motional state of a trapped ion, where the internal pseudospin provides a convenient probe qubit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.