Background & Aims
The gut microbiota is a complex and densely populated community in a dynamic environment determined by host physiology. We investigated how intestinal oxygen levels affect the composition of the fecal and mucosally adherent microbiota.
Methods
We used the phosphorescence quenching method and a specially designed intraluminal oxygen probe to dynamically quantify gut luminal oxygen levels in mice. 16S rRNA gene sequencing was used to characterize the microbiota in intestines of mice exposed to hyperbaric oxygen, human rectal biopsy and mucosal swab samples, and paired human stool samples.
Results
Average pO2 values in the lumen of the cecum were extremely low (<1 mmHg). In altering oxygenation of intestines of mice, we observed that oxygen diffused from intestinal tissue and established a radial gradient the extended from the tissue interface into the lumen. Increasing tissue oxygenation with hyperbaric oxygen altered the composition of the gut microbioita in mice. In humans, 16S rRNA gene analyses revealed an increased proportion of oxygen-tolerant organisms of the Proteobacteria and Actinobacteria phyla associated with the rectal mucosa, compared with the feces, indicating an effect of oxygenation on the microbiota. A consortium of asaccharolytic bacteria of the Firmicute and Bacteroidetes phyla, which primarily metabolize peptones and amino acids, was associated primarily with mucus. This could be due to the presence of proteinaceous substrates provided by mucus and the shedding of the intestinal epithelium.
Conclusions
In an analysis of intestinal microbiota of mice and humans, we observed a radial gradient of microbes linked to distribution of oxygen and nutrients provided by host tissue.
Endothelial progenitor cells (EPCs) are essential in vasculogenesis and wound healing, but their circulating and wound level numbers are decreased in diabetes. This study aimed to determine mechanisms responsible for the diabetic defect in circulating and wound EPCs. Since mobilization of BM EPCs occurs via eNOS activation, we hypothesized that eNOS activation is impaired in diabetes, which results in reduced EPC mobilization. Since hyperoxia activates NOS in other tissues, we investigated whether hyperoxia restores EPC mobilization in diabetic mice through BM NOS activation. Additionally, we studied the hypothesis that impaired EPC homing in diabetes is due to decreased wound level stromal cell-derived factor-1α (SDF-1α), a chemokine that mediates EPC recruitment in ischemia. Diabetic mice showed impaired phosphorylation of BM eNOS, decreased circulating EPCs, and diminished SDF-1α expression in cutaneous wounds. Hyperoxia increased BM NO and circulating EPCs, effects inhibited by the NOS inhibitor N-nitro-l-arginine-methyl ester. Administration of SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, and wound healing. Thus, hyperoxia reversed the diabetic defect in EPC mobilization, and SDF-1α reversed the diabetic defect in EPC homing. The targets identified, which we believe to be novel, can significantly advance the field of diabetic wound healing.
Background-This paper outlines therapeutic mechanisms of hyperbaric oxygen therapy (HBO 2 ) and reviews data on its efficacy for clinical problems seen by plastic and reconstructive surgeons.
Carbon monoxide (CO) poisoning is common in modern society, resulting in significant morbidity and mortality in the United States annually. Over the past two decades, sufficient information has been published about carbon monoxide poisoning in the medical literature to draw firm conclusions about many aspects of the pathophysiology, diagnosis, and clinical management of the syndrome, along with evidence-based recommendations for optimal clinical practice. This article provides clinical practice guidance to the pulmonary and critical care community regarding the diagnosis, management, and prevention of acute CO poisoning. The article represents the consensus opinion of four recognized content experts in the field. Supporting data were drawn from the published, peer-reviewed literature on CO poisoning, placing emphasis on selecting studies that most closely mirror clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.