Summary Episodic memory is thought to critically depend on interaction of the hippocampus with distributed brain regions [1–3]. Specific contributions of distinct networks have been hypothesized, with the hippocampal posterior-medial (HPM) network implicated in recollection of highly precise contextual and spatial information [3–6]. Current evidence for HPM specialization is mostly indirect, derived from correlative measures such as neural activity recordings. Here, we tested the causal role of HPM in recollection using network-targeted noninvasive brain stimulation in humans, which has previously been shown to increase functional connectivity within the HPM network [7]. Effects of multiple-day electromagnetic stimulation were assessed using an object-location memory task that segregated recollection precision from general recollection success. HPM network-targeted stimulation produced lasting (~24 h) enhancement of recollection precision, without effects on general success. Canonical neural correlates of recollection [8–10] were also modulated by stimulation. Late-positive evoked potential amplitude and theta-alpha oscillatory power were reduced, suggesting that stimulation can improve memory through enhanced reactivation of detailed visuospatial information at retrieval. The HPM network was thus specifically implicated in processing of fine-grained memory detail, supporting functional specialization of hippocampal-cortical networks. These findings demonstrate that brain networks can be causally linked to distinct and specific neurocognitive functions and suggest mechanisms for long-lasting changes in memory due to network-targeted stimulation.
The molecular chaperone Hsp33 in Escherichia coli responds to oxidative stress conditions with the rapid activation of its chaperone function. On its activation pathway, Hsp33 progresses through three major conformations, starting as a reduced, zinc-bound inactive monomer, proceeding through an oxidized zinc-free monomer, and ending as a fully active oxidized dimer. While it is known that Hsp33 senses oxidative stress through its C-terminal four-cysteine zinc center, the nature of the conformational changes in Hsp33 that must take place to accommodate this activation process is largely unknown. To investigate these conformational rearrangements, we constructed constitutively monomeric Hsp33 variants as well as fragments consisting of the redox regulatory C-terminal domain of Hsp33. These proteins were studied by a combination of biochemical and NMR spectroscopic techniques. We found that in the reduced, monomeric conformation, zinc binding stabilizes the C terminus of Hsp33 in a highly compact, ␣-helical structure. This appears to conceal both the substrate-binding site as well as the dimerization interface. Zinc release without formation of the two native disulfide bonds causes the partial unfolding of the C terminus of Hsp33. This is sufficient to unmask the substrate-binding site, but not the dimerization interface, rendering reduced zinc-free Hsp33 partially active yet monomeric. Critical for the dimerization is disulfide bond formation, which causes the further unfolding of the C terminus of Hsp3 and allows the association of two oxidized Hsp33 monomers. This then leads to the formation of active Hsp33 dimers, which are capable of protecting cells against the severe consequences of oxidative heat stress.
Targeted noninvasive stimulation selectively increases activity of the human hippocampal network during memory formation.
Episodic memory is thought to rely on interactions of the hippocampus with other regions of the distributed hippocampal-cortical network (HCN) via interregional activity synchrony in the theta frequency band. We sought to causally test this hypothesis using network-targeted transcranial magnetic stimulation. Healthy human participants completed four experimental sessions, each involving a different stimulation pattern delivered to the same individualized parietal cortex location of the HCN for all sessions. There were three active stimulation conditions, including continuous theta-burst stimulation, intermittent theta-burst stimulation, and beta-frequency (20-Hz) repetitive stimulation, and one sham condition. Resting-state fMRI and episodic memory testing were used to assess the impact of stimulation on hippocampal fMRI connectivity related to retrieval success. We hypothesized that theta-burst stimulation conditions would most strongly influence hippocampal-HCN fMRI connectivity and retrieval, given the hypothesized relevance of theta-band activity for HCN memory function. Continuous theta-burst stimulation improved item retrieval success relative to sham and relative to beta-frequency stimulation, whereas intermittent theta-burst stimulation led to numerical but nonsignificant item retrieval improvement. Mean hippocampal fMRI connectivity did not vary for any stimulation conditions, whereas individual differences in retrieval improvements due to continuous theta-burst stimulation were associated with corresponding increases in fMRI connectivity between the hippocampus and other HCN locations. No such memory-related connectivity effects were identified for the other stimulation conditions, indicating that only continuous theta-burst stimulation affected memory-related hippocampal-HCN connectivity. Furthermore, these effects were specific to the targeted HCN, with no significant memory-related fMRI connectivity effects for two distinct control brain networks. These findings support a causal role for fMRI connectivity of the hippocampus with the HCN in episodic memory retrieval and indicate that contributions of this network to retrieval are particularly sensitive to continuous theta-burst noninvasive stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.