Aims: This study investigates the antimicrobial activity and mode of action of two natural products, eugenol and thymol, a commonly utilized biostatic agent, triclocarban (TCC), and two surfactants, didecyldimethylammonium chloride (DDDMAC) and C 10 -C 16 alkyldimethyl amine N-oxides (ADMAO). Methods and Results: Methods used included: determination of minimum inhibitory concentrations (MICs), lethal effect studies with suspension tests and the investigation of sub-MIC concentrations on growth of E. coli, Staph. aureus and Ps. aeruginosa using a Bioscreen microbiological analyser. Leakage of intracellular constituents and the effects of potentiating agents were also investigated. Only DDDMAC was bactericidal against all of the organisms tested. Eugenol, thymol and ADMAO showed bacteriostatic and bactericidal activity, but not against Ps. aeruginosa. TCC was only bacteristatic against Staph. aureus, but like the other agents, it did affect the growth of the other organisms in the Bioscreen experiments. All of the antimicrobial agents tested were potentiated by the permeabilizers to some extent and leakage of potassium was seen with all of the agents except TCC. Conclusions: DDDMAC was bactericidal against all organisms tested and all compounds had some bacteriostatic action. Low level static effects on bacterial growth were seen with sub-MIC concentrations. Membrane damage may account for at least part of the mode of action of thymol, eugenol, DDDMAC and ADMAO. Significance and Impact of the Study: The ingredients evaluated demonstrated a range of bactericidal and bacteriostatic properties against the Gram-negative and -positive organisms evaluated and the membrane (leakage of intracellular components) was implicated in the mode of action for most (except TCC). Sub-MIC levels of all ingredients did induce subtle effects on the organisms which impacted bacterial growth, even for those which had no true inhibitory effects.
US SE L L. 1999. Ortho-phthalaldehyde (OPA) was tested against a range of organisms including glutaraldehyde-resistant mycobacteria, Bacillus subtilis spores and coat-defective spores. Glutaraldehyde (GTA) and peracetic acid (PAA) were tested for comparative purposes. Both suspension and carrier tests were performed using a range of concentrations and exposure times. All three biocides were very effective (− 5 log reduction) against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa in suspension tests. OPA and GTA (PAA was not tested) were also very effective against Staph. aureus and Ps. aeruginosa in carrier tests. OPA showed good activity against the mycobacteria tested including the two GTA-resistant strains, but 0·5% w/v OPA was found not to be sporicidal. However, limited activity was found with higher concentrations and pH values. Coat-defective spores were more susceptible to OPA, suggesting that the coat may be responsible for this resistance. The findings of this study suggest that OPA is effective against GTAresistant mycobacteria and that it is a viable alternative to GTA for high level disinfection.
Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.
Ortho‐phthalaldehyde (OPA) is a new aromatic dialdehyde antimicrobial agent, the mechanism of action of which has been little studied. The aims of this paper are to examine what is currently known about its mechanism of action, to compare the action with that of a widely investigated aliphatic dialdehyde, glutaraldehyde (GTA), and to put forward a hypothesis that would, in the light of current knowledge, explain how OPA inactivates micro‐organisms, including GTA‐resistant Mycobacterium chelonae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.