Magnetic susceptibility differences at tissue interfaces lead to signal loss in conventional gradient-echo (GE) EPI. This poses a problem for fMRI in language and memory paradigms, which activate the most affected regions. Two methods proposed to overcome this are spin-echo EPI and dual GE EPI, where two EPI read-outs are serially collected at a short and longer echo time. The spin-echo method applies a refocusing pulse to recover dephased MR signal due to static field inhomogeneities, but is known to have a relatively low blood oxygenation level dependant (BOLD) sensitivity. In comparison, GE has superior BOLD sensitivity, and by employing an additional shorter echo, in a dual GE sequence, it can reduce signal loss due to spin dephasing. We directly compared dual GE and spin-echo fMRI during a semantic categorization task, which has been shown to activate the inferior temporal region-a region known to be affected by magnetic susceptibility. A whole brain analysis showed that the dual GE resulted in significantly higher activation within the left inferior temporal fusiform (ITF) cortex, compared to spin-echo. The inferior frontal gyrus (IFG) was activated for dual GE, but not spin-echo. Regions of interest analysis was carried out on the anterior and posterior ITF, left and right IFG, and part of the cerebellum. Dual GE outperformed spin-echo in the anterior and posterior ITF and bilateral IFG regions, whilst being equal in the cerebellum. Hence, dual GE should be the method of choice for fMRI studies of inferior temporal regions.
Human and animal lesion studies have shown that behavior can be catastrophically impaired after bilateral lesions but that unilateral damage often produces little or no effect, even controlling for lesion extent. This pattern is found across many different sensory, motor, and memory domains. Despite these findings, there has been no systematic, computational explanation. We found that the same striking difference between unilateral and bilateral damage emerged in a distributed, recurrent attractor neural network. The difference persists in simple feedforward networks, where it can be understood in explicit quantitative terms. In essence, damage both distorts and reduces the magnitude of relevant activity in each hemisphere. Unilateral damage reduces the relative magnitude of the contribution to performance of the damaged side, allowing the intact side to dominate performance. In contrast, balanced bilateral damage distorts representations on both sides, which contribute equally, resulting in degraded performance. The model's ability to account for relevant patient data suggests that mechanisms similar to those in the model may operate in the brain.
This investigation explored the hypothesis that patterns of acquired dyslexia may reflect, in part, plasticity-driven relearning that dynamically alters the division of labour (DOL) between the direct, orthography → phonology (O → P) pathway and the semantically mediated, orthography → semantics → phonology (O → S → P) pathway. Three simulations were conducted using a variant of the triangle model of reading. The model demonstrated core characteristics of normal reading behaviour in its undamaged state. When damage was followed by reoptimization (mimicking spontaneous recovery), the model reproduced the deficits observed in the central dyslexias-acute phonological damage combined with recovery matched data taken from a series of 12 phonological dyslexic patients-whilst progressive semantic damage interspersed with recovery reproduced data taken from 100 observations of semantic dementia patients. The severely phonologically damaged model also produced symptoms of deep dyslexia (imageability effects, production of semantic and mixed semantic/visual errors). In all cases, the DOL changed significantly in the recovery period, suggesting that postmorbid functional reorganization is important in understanding behaviour in chronic-stage patients.
The neural basis of speech comprehension has been investigated intensively during the past few decades. Incoming auditory signals are analysed for speech-like patterns and meaningful information can be extracted by mapping these sounds onto stored semantic representations. Investigation into the neural basis of speech comprehension has largely focused on the temporal lobe, in particular the superior and posterior regions. The ventral anterior temporal lobe (vATL), which includes the inferior temporal gyrus (ITG) and temporal fusiform gyrus (TFG) is consistently omitted in fMRI studies. In contrast, PET studies have shown the involvement of these ventral temporal regions. One crucial factor is the signal loss experienced using conventional echo planar imaging (EPI) for fMRI, at tissue interfaces such as the vATL. One method to overcome this signal loss is to employ a dual-echo EPI technique. The aim of this study was to use intelligible and unintelligible (spectrally rotated) sentences to determine if the vATL could be detected during a passive speech comprehension task using a dual-echo acquisition. A whole brain analysis for an intelligibility contrast showed bilateral superior temporal lobe activations and a cluster of activation within the left vATL. Converging evidence implicates the same ventral temporal regions during semantic processing tasks, which include language processing. The specific role of the ventral temporal region during intelligible speech processing cannot be determined from this data alone, but the converging evidence from PET, MEG, TMS and neuropsychology strongly suggest that it contains the stored semantic representations, which are activated by the speech decoding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.