The temperature of rubber or rubber-metal springs increases under cyclic loading, due to hysteresis losses and low rubber thermal conductivity. Hysteresis losses correspond to energy dissipation from the rubber, which is primarily converted into heat. This well-known phenomenon, called heat build-up, is the primary reason for rubber aging. Increase in temperature within the rubber compound leads to degradation of its physical and chemical properties, increase in stiffness and loss of damping capability. This paper presents a novel procedure of heat generation prediction in rubber or rubber-metal springs. The procedure encompasses the prediction of hysteresis loss, i. e. dissipated energy within the rubber, by finite element analysis and application of a modern visco-plastic rubber constitutive model. The obtained dissipated energy was used as an input for transient thermal analysis. Verification of the proposed procedure was performed by comparison of simulation results with experimentally obtained data during the dynamic loading of the rubber specimen. The proposed procedure is highly computationally efficient and it enables time integration, which can be problematic in coupled mechanical thermal analysis. [Projekat Ministarstva nauke Republike Srbije, br. TR35005: Research and Development of New Generation of Wind Turbines of High Energy Efficiency
This paper presents an innovative method for determining the distribution of the friction generated heat from the contact of a locomotive wheel and rail, as well as the heat partition factor, during wheel slipping of an accelerating locomotive. The new method combines the finite element analysis simulation and experimental determination of the temperature distribution in a downsized model of a wheel and rail. As a result of a virtual experiment by the finite element analysis, an empirical dependence between the temperature distribution and the heat partition factor was established. The determination of the dependence enabled finding of the exact value of the heat partition factor by the optimization procedure based on matching temperatures obtained by the virtual and real experiment.
The paper gives a critical review of the application of different forms of dance in physical education teaching. Dance as a playful form of art was considered in many respects - as a kind of art, by its basic characteristics, its essence, as an aesthetic expression through essentially and formally beautiful. Dance forms are organized into three areas: folk dance, social dance and artistic dance. For each of the forms, as a part of art in space and time the basic types and their essential characteristics and benefits they can provide are specified. The study of dance in general embraces the historical, creative, aesthetic and critical dimensions. Dance is considered as a means of preserving culture and tradition, physical exercise and as an expression.
Knee pads have become increasingly popular among volleyball players. Given the fact high-intensity activities that are crucial to successfully playing this sport lead to an increased risk of a knee injury, the primary use of knee pads is to prevent potential injury. However, no research has been carried out to explain the effects of knee pads on the most important physical abilities in volleyball players, thus directly affecting performance. This study was undertaken to determine the effects of knee pads on the explosive power of the lower extremities, linear speed, and agility in young female volleyball players. In two separated sessions, 84 female volleyball players (age: 14.83 ± 0.72 years; height: 163.19 ± 8.38 cm; body mass: 53.64 ± 10.42 kg; VE: 5.30 ± 3.39 years) completed squat jumps (SJ), countermovement jumps (CMJ) with and without arm swing, linear sprints at 5-m and 10-m, modified t-test, and 5-10-5 shuttle test. Data analyses included descriptive statistics, paired sample T-tests and use of effect size (ES). There was no statistical difference between the two conditions for SJ (p = 0.156; ES = 0.18), CMJ (p = 0.817; ES = 0.03), CMJ with arm swing (p = 0.194; ES = 0.14), linear sprint at 5 m (p = 0.789; ES = 0.03) and 10 m (p = 0.907; ES = −0.01), modified t-test (p = 0.284; ES = 0.13), and 5-10-5 shuttle test (p = 0.144; ES = 0.19). Wearing knee pads has neither an inhibitory nor positive effects on explosive power of the lower extremities, linear speed, and agility in young female volleyball players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.