Consumer and environmental safety decisions are based on exposure and hazard data, interpreted using risk assessment approaches. The adverse outcome pathway (AOP) conceptual framework has been presented as a logical sequence of events or processes within biological systems which can be used to understand adverse effects and refine current risk assessment practices in ecotoxicology. This framework can also be applied to human toxicology and is explored on the basis of investigating the molecular initiating events (MIEs) of compounds. The precise definition of the MIE has yet to reach general acceptance. In this work we present a unified MIE definition: an MIE is the initial interaction between a molecule and a biomolecule or biosystem that can be causally linked to an outcome via a pathway. Case studies are presented, and issues with current definitions are addressed. With the development of a unified MIE definition, the field can look toward defining, classifying, and characterizing more MIEs and using knowledge of the chemistry of these processes to aid AOP research and toxicity risk assessment. We also present the role of MIE research in the development of in vitro and in silico toxicology and suggest how, by using a combination of biological and chemical approaches, MIEs can be identified and characterized despite a lack of detailed reports, even for some of the most studied molecules in toxicology.
In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.
The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.
Adverse outcome pathways (AOPs) offer a pathway-based toxicological framework to support hazard assessment and regulatory decision-making. However, little has been discussed about the scientific confidence needed, or how complete a pathway should be, before use in a specific regulatory application. Here we review four case studies to explore the degree of scientific confidence and extent of completeness (in terms of causal events) that is required for an AOP to be useful for a specific purpose in a regulatory application: (i) Membrane disruption (Narcosis) leading to respiratory failure (low confidence), (ii) Hepatocellular proliferation leading to cancer (partial pathway, moderate confidence), (iii) Covalent binding to proteins leading to skin sensitization (high confidence), and (iv) Aromatase inhibition leading to reproductive dysfunction in fish (high confidence). Partially complete AOPs with unknown molecular initiating events, such as 'Hepatocellular proliferation leading to cancer', were found to be valuable. We demonstrate that scientific confidence in these pathways can be increased though the use of unconventional information (eg, computational identification of potential initiators). AOPs at all levels of confidence can contribute to specific uses. A significant statistical or quantitative relationship between events and/or the adverse outcome relationships is a common characteristic of AOPs, both incomplete and complete, that have specific regulatory uses. For AOPs to be useful in a regulatory context they must be at least as useful as the tools that regulators currently possess, or the techniques currently employed by regulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.