If immunized with an antigen of interest, transgenic mice with large portions of unrearranged human immunoglobulin loci can produce fully human antigen-specific antibodies; several such antibodies are in clinical use. However, technical limitations inherent to conventional transgenic technology and sequence divergence between the human and mouse immunoglobulin constant regions limit the utility of these mice. Here, using repetitive cycles of genome engineering in embryonic stem cells, we have inserted the entire human immunoglobulin variable-gene repertoire (2.7 Mb) into the mouse genome, leaving the mouse constant regions intact. These transgenic mice are viable and fertile, with an immune system resembling that of wild-type mice. Antigen immunization results in production of high-affinity antibodies with long human-like complementarity-determining region 3 (CDR3H), broad epitope coverage and strong signatures of somatic hypermutation. These mice provide a robust system for the discovery of therapeutic human monoclonal antibodies; as a surrogate readout of the human antibody response, they may also aid vaccine design efforts.
Sema7A is a recently described member of the semaphorin family that is associated with the cell surface via a glycophosphatidylinositol linkage. This study examined the mRNA expression and biological properties of this protein. Although the expression of Sema7A was demonstrated in lymphoid and myeloid cells, no stimulation of cytokine production or proliferation was evident in B or T cells. In contrast, Sema7A is an extremely potent monocyte activator, stimulating chemotaxis at 0.1 pm and inflammatory cytokine production (interleukin‐1 (IL‐1β), tumour necrosis factor‐α (TNF‐α), IL‐6 and IL‐8) and superoxide release at 1–10 pm. Sema7A is less effective at stimulating neutrophils. Sema7A also significantly increases granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) production from monocytes but has no consistent effect on IL‐10, IL‐12 or IL‐18. Sema7A can also induce monocytes toward a dendritic cell morphology. Sema7A is expressed in monocytes and probably released through proteolysis and acts as a very potent autocrine activator of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.