Various plate reconstructions predict that the Alexander terrane, a Neoproterozoic-Jurassic crustal fragment now located in the North American Cordillera, evolved in proximity to the northern Appalachian-Caledonian convergent margin during assembly of supercontinent Laurussia. To test stratigraphic connections with Laurussia that are implied by these plate reconstructions, we measured the Hf isotopic compositions of 176 detrital zircons from two relevant sedimentary sequences of the Alexander terrane. An older, Upper Silurian-Lower Devonian terrestrial to shallow-marine molasse sequence yields 405-490 Ma detrital zircons with negative ε Hf(t) values and Mesoproterozoic to Paleoproterozoic Hf model ages. In combination with paleomagnetic and biogeographic constraints, these Hf data argue for the molasse strata to be now-displaced equivalents of the Old Red Sandstone and primarily sourced from crustally contaminated granitoids in the Greenland, Svalbard, or British Caledonides. Late Silurian-Early Devonian orogenesis in the Alexander terrane is therefore likely related to the Scandian-Salinic phase of Appalachian-Caledonian mountain building. Younger, Middle Devonian sequences of the Alexander terrane are endowed in 390-490 Ma detrital zircons with positive ε Hf(t) values and Neoproterozoic Hf model ages. These isotopic signatures are consistent with the erosion of local basement rocks during the opening of the Slide Mountain-Angayucham backarc rift and tectonic separation of the Alexander terrane from northern Laurussia.
Two large tectonic terranes, Alexander and Wrangellia, at the northwestern margin of North America, have long been considered exotic to each other and the rest of the northern Cordillera. Pennsylvanian plutons tie the two terranes together, but their seemingly dissimilar geological character led most workers to believe the two evolved separately before and after the Pennsylvanian. New chemical abrasion zircon U-Pb geochronology, whole-rock geochemistry, and other geological evidence from Paleozoic magmatic rocks in Yukon, Canada, suggest that the terranes evolved together by the late Paleozoic and that the Alexander terrane partially forms the basement to a portion of Wrangellia. Large ca. 363 Ma gabbro complexes have non-arc geochemical signatures and intrude both terranes. Volcanic rocks near the base of northern Wrangellia are ca. 352 Ma and have back-arc to N-MORB geochemical signatures. At higher stratigraphic levels, Wrangellia contains abundant Mississippian to Pennsylvanian arc volcanic and volcaniclastic rocks (Skolai arc). Similar-aged arc/back-arc rocks are found in the southern part of Wrangellia (Sicker arc) and are interpreted as the southern extension of the Skolai arc. We propose that the gabbros represent the initiation of extension through an arc located at the margin of the Alexander terrane (Skolai/ Sicker arc system). Extension progressed enough to deposit basalts within a back-arc basin setting. Subduction reversal closed the basin and rejuvenated the arc in the Pennsylvanian. Collision of the arc with the Alexander terrane led to exhumation and deposition of conglomerates unconformably on top of the gabbros. The evolution of the Alexander terrane and Wrangellia proposed here is broadly similar to the Late Devonian plate tectonic history along the northwestern Laurentian margin and is likely part of the same chain of arcs/back-arcs.
Detrital zircon U–Pb geochronology and Hf isotope geochemistry allow us to decipher the crustal provenance of Cambrian–Ordovician backarc basin strata of the Alexander terrane, North American Cordillera, and evaluate models for its origin and displacement history relative to Baltica, Gondwana, Siberia, and Laurentia. Quartzose shallow-marine sandstones of the Alexander terrane contain a range of Neoproterozoic to Neoarchaean detrital zircons with the most dominant age groupings c . 565–760, 1000–1250, 1450, and 1650 Ma. Subordinate volcaniclastic sandstones yield Cambrian and Ordovician detrital zircons with a prominent age peak at 477 Ma. The detrital zircon age signatures resemble coeval strata in the Eurasian high Arctic, and in combination with faunal and palaeomagnetic constraints suggest provenance from local magmatic rocks and the Timanide orogenic belt and Fennoscandian Shield of NE Baltica. The Hf isotopic compositions of Palaeozoic to Neoarchaean detrital zircons strongly favour Baltican crustal sources instead of similar-aged domains of Gondwana. The Alexander terrane formed part of an arc system that fringed the Uralian passive margin, and its position in the Uralian Seaway allowed faunal exchange between the Siberian and Baltican platforms. The available evidence suggests that the Alexander terrane originated in the Northern Hemisphere and migrated to the palaeo-Pacific Ocean by travelling around northern Laurentia. Supplementary material: U–Pb and Lu–Hf data tables are available at www.geolsoc.org.uk/SUP18557 .
Late Paleozoic assembly of the AlexanderWrangellia-Peninsular composite terrane is recorded by two phases of regional deformation, metamorphism, and magmatism within basement complexes of the Alexander (Craig and Admiralty subterranes), Wrangellia, and Peninsular terranes in the Canadian and Alaskan Cordillera. New secondary ion mass spectrometry (SIMS) and chemical abrasionisotope dilution-thermal ionization mass spectrometry (CA-ID-TIMS) zircon U-Pb ages, whole-rock major-and trace-element and Nd-Sr isotope geochemical compositions, and geological fi eld observations of late Paleozoic igneous rocks were used to identify the precise timing and signifi cance of this tectonism in the Saint Elias Mountains region of southwestern Yukon and eastern Alaska. Middle to Late Pennsylvanian (301-307 Ma) igneous rocks, herein assigned to the Barnard Glacier suite, were preferentially emplaced along the Wrangellia-Craig subterrane boundary and mainly comprise syenitic plutons that intrude Paleozoic country rocks with evidence of Pennsylvanian or older (D1) deformation. We propose that Barnard Glacier suite magmatism was produced by a slab breakoff event after the consumption of a narrow backarc ocean basin and early Pennsylvanian collision between the WrangelliaPeninsular arc and Craig subterrane passive margin. Early Permian (284-291 Ma) dioritic to granodioritic rocks, herein assigned to the Donjek Glacier suite, comprise the vestiges of an extensive magmatic system within the Craig subterrane of southwestern Yukon and southeastern Alaska. The available data suggest that the Donjek Glacier suite represents part of a short-lived, Early Permian arc that initiated along the outboard margin of the Craig subterrane-Wrangellia-Peninsular block after Pennsylvanian collision and slab breakoff. At two fi eld localities in southwestern Yukon, Paleozoic country rocks with D1 fabrics are also intruded by sills and dikes of the Donjek Glacier suite that show evidence of ca. 285 Ma regional deformation and metamorphism (D2). Field evidence for Early Permian tectonism in the Saint Elias Mountains implies direct connections with coeval deformation and metamorphism in the Admiralty subterrane, a microcontinent in the Admiralty Island region of southeastern Alaska that developed separately from the Craig subterrane prior to the Early Per mian. D2 tectonism was likely related to the entry of the Admiralty subterrane margin into the Early Permian subduction zone, which resulted in collision and fi nal amalgamation of the Alexander-Wrangellia-Peninsular composite terrane. Our tectonic scenarios require the currently accepted confi guration of the Alexander terrane (com posite of the Craig and Admiralty subterranes) to have only existed after the Early Permian collision between the Admiralty subterrane and the previously assembled Craig subterrane-Wrangellia-Peninsular terrane. Biogeographic and other geological data suggest that the two-part assembly of the AlexanderWrangellia-Peninsular composite terrane took place along a convergent margin t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.