Estimation of solution norms and stability for time-dependent nonlinear systems is ubiquitous in numerous engineering, natural science and control problems. Yet, practically valuable results are rare in this area. This paper develops a novel approach, which bounds the solution norms, derives the corresponding stability criteria, and estimates the trapping/stability regions for some nonautonomous and nonlinear systems, which arise in various application domains. Our inferences rest on deriving a scalar differential inequality for the norms of solutions to the initial systems. Utility of the Lipschitz inequality linearizes the associated auxiliary differential equation and yields both the upper bounds for the norms of solutions and the relevant stability criteria. To refine these inferences, we introduce a nonlinear extension of the Lipschitz inequality, which improves the developed bounds and allows estimation of the stability basins and trapping regions for the corresponding systems. Finally, we confirm the theoretical results in representative simulations.
This paper is devoted to comparing the asymptotics of a solution, describing the wave motion of a discrete lattice and its continuous approximations. The transition from a discrete medium to a continuous one changes the symmetry of the system. The influence of this change on the asymptotic behavior of waves is of great interest. For the discrete case, Schrödinger’s analytical solution of the initial-value problem for the Lagrange lattice is used. Various continuous approximations are proposed to approximate the lattice. They are based on Debye’s concept of quasicontinuum. The asymptotics of the initial motion and the behavior of the systems in the vicinity of the quasifront and at large times are compared. The approximations of phase and group velocities is analyzed. The merits and limitations of the described approaches are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.