BackgroundSingle-wall carbon nanotubes (SWCNTs), with their unique physicochemical and mechanical properties, have many potential new applications in medicine and industry. There has been great concern subsequent to preliminary investigations of the toxicity, biopersistence, pathogenicity, and ability of SWCNTs to translocate to subpleural areas. These results compel studies of potential interactions of SWCNTs with mesothelial cells.ObjectiveExposure to asbestos is the primary cause of malignant mesothelioma in 80–90% of individuals who develop the disease. Because the mesothelial cells are the primary target cells of asbestos-induced molecular changes mediated through an oxidant-linked mechanism, we used normal mesothelial and malignant mesothelial cells to investigate alterations in molecular signaling in response to a commercially manufactured SWCNT.MethodsIn the present study, we exposed mesothelial cells to SWCNTs and investigated reactive oxygen species (ROS) generation, cell viability, DNA damage, histone H2AX phosphorylation, activation of poly(ADP-ribose) polymerase 1 (PARP-1), stimulation of extracellular signal-regulated kinase (ERKs), Jun N-terminal kinases (JNKs), protein p38, and activation of activator protein-1 (AP-1), nuclear factor κB (NF-κB), and protein serine-threonine kinase (Akt).ResultsExposure to SWCNTs induced ROS generation, increased cell death, enhanced DNA damage and H2AX phosphorylation, and activated PARP, AP-1, NF-κB, p38, and Akt in a dose-dependent manner. These events recapitulate some of the key molecular events involved in mesothelioma development associated with asbestos exposure.ConclusionsThe cellular and molecular findings reported here do suggest that SWCNTs can cause potentially adverse cellular responses in mesothelial cells through activation of molecular signaling associated with oxidative stress, which is of sufficient significance to warrant in vivo animal exposure studies.
The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf®-III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos>CNF>SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.
Silicosis is a devastating pulmonary disease that continues to occur in industrial workplaces. Its pathogenesis is under critical evaluation, and this report provides new concepts on the possible early events that occur in lungs resulting from the inhalation of freshly fractured versus aged quartz in the development of two diverse disease entities. In this study, we evaluated the biochemical and pathologic changes in the lavagate and lungs of rats exposed to freshly fractured quartz (generated by jet milling), aged quartz (milled then aged for 2 mo prior to use), or clean air 5 h a day for 10 d over a 2-wk period. The concentration of crystalline quartz in the chambers averaged 20 mg/m3. Particle concentrations and particle size were similar for the freshly milled and aged quartz exposures. However, free radical concentrations associated with the freshly milled quartz samples were significantly higher than those for aged quartz. After a 2-wk exposure, animals were killed and studied by bronchoalveolar lavage and pulmonary histopathology. Inhalation of aged quartz increased the number of bronchoalveolar lavage cells, demonstrated histopathologic evidence of increased pulmonary infiltrates, showed enhanced concentrations of biochemical markers of lung injury, increased lipid peroxidation, and the ability of pulmonary phagocytes to produce more oxygen radicals. In general, all these pulmonary responses were significantly more pronounced after inhalation of freshly fractured quartz compared with aged quartz. In contrast, antioxidant enzymes showed decreased concentrations in the freshly fractured quartz-exposed group compared with the aged quartz-exposed animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Perfluorooctane sulfonate (PFOS) is a member of perfluoroalkyl acids (PFAA) containing an 8-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are one of the strongest in organic chemistry and widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.