Strontium isotopes (87Sr/86Sr) recorded in the otoliths of Pacific Salmon (Oncorhynchus spp.) are commonly used to identify natal origin. For species that migrate at or soon after emergence, the embryonic region of the otolith provides the only record of provenance. However, maternal contribution of Sr from the yolk can confound the isotopic signature of the natal site. We experimentally quantified maternal and exogenous diet contributions to otolith 87Sr/86Sr over embryonic development in Kokanee salmon (O. nerka). Eggs from two populations in isotopically distinct lakes were incubated and reared in a common water source. Timing of developmental events and proportional contribution from yolk to otolith 87Sr/86Sr differed significantly between the two populations. We suggest that the magnitude of difference in 87Sr/86Sr between yolk and water, the relative concentrations of Sr and Ca in these isotopic sources, and population-specific effects on otolith growth and composition contribute to this variation. Understanding how these factors affect otolith 87Sr/86Sr could extend the use of otolith geochemistry for determining provenance to species and populations in which natal site rearing is limited.
This work describes the first exploration of metal− organic frameworks (MOFs) as "next-generation" ion emitters for thermal ionization mass spectrometry (TIMS). MOFs were identified as promising candidates for this application given the synthetic control over their desired structural properties. This tunability results in well-ordered, high-surface-area, high-porosity frameworks with targeted sorption affinities. Here, we explored an aluminum-based, bipyridine-containing MOF (MOF-253) with and without incorporating a high work function metal, rhenium (Re). After analysis of an Nd-bearing MOF, we hypothesized that the well-dispersed, sponge-like interconnected network of the degraded structure would enhance Nd ionization more than traditional TIMS loading techniques (i.e., phosphoric acid). Compared to filaments loaded with phosphoric acid that require an additional benzene carburization step, the Nd ionization efficiencies (atoms detected relative to atoms loaded) for heated filaments loaded with MOF-253 were similar (∼1%). Electron microscopy after TIMS analysis demonstrated that the MOF was retained on the filament. While these results are preliminary, they demonstrate that MOFs have potential to enhance ionization and exceed the performance of traditional loading techniques by forming nanoporous ion emitters. Thus, further experimentation is likely to exceed this performance through more specific selection of the base MOF structure and modifications to porosity and composition. This work represents a novel application of MOFs and a next step in the pursuit of advanced thermal ionization with potential to expand across the periodic table.
We report elemental and isotopic analysis for the noble metal fission product phase found in irradiated nuclear fuel. The noble metal phase was isolated from three commercial irradiated UO 2 fuels by chemically dissolving the UO 2 fuel matrix, leaving the noble metal phase as the undissolved residue. Macro amounts of this residue were dissolved using a KOH + KNO 3 fusion and then chemically separated into individual elements for analysis by mass spectrometry. Though the composition of this phase has been previously reported, this work is the most comprehensive chemical analysis of the isolated noble metal phase to date. We report both elemental and isotopic abundances of the five major components of the noble metal phase (Mo, Tc, Ru, Rh, Pd). In addition, we report a sixth element present in high quantities in this phase, tellurium. Tellurium appears to be an integral component of noble metal particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.