Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range‐wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions. The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K ) and population density (N ) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, western USA, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments. Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.
Scientists, policy makers, and journalists are three key, interconnected players involved in prioritizing and implementing solutions to mitigate the consequences of anthropogenic pressures on the environment. The way in which information is framed and expertise is communicated by the media is crucial for political decisions and for the integrated management of environmental issues. Here we present a comparative study of scientific literature and press articles addressing climate change and biodiversity. We extensively scrutinized the scientific literature, research funding, and press articles from the USA, Canada, and United Kingdom addressing climate change and biodiversity issues between 1991 and 2016. We found that media coverage of climate change was up to eight times higher compared to biodiversity. This discrepancy could not be explained by different scientific output between the two issues. Moreover, climate change media coverage was often related to specific events whereas no such indication of a connection was found in the case of biodiversity. An international communication strategy is urgently required to raise public awareness on biodiversity issues. We discussed several initiatives that scientists could undertake to better communicate major discoveries to the public and policy makers.
Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non-climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest inventory plots, sampled from 1970 to 2018 in meridional Québec, Canada, to identify what environmental conditions promote or prevent regional-scale forest transitions. We used a continuous-time multi-state Markov model to quantify the probabilities of transitions between forest states (temperate, boreal, mixed, pioneer) as a function of climate (mean temperature and climate moisture index during the growing season), soil conditions (pH and drainage) and disturbances (severity levels of natural disturbances and logging). We further investigate how different disturbance types and severities impact forests' short-term transient dynamics and long-term equilibrium using properties of Markov transition matrices. The most common transitions observed during the study period were from mixed to temperate states, as well as from pioneer to boreal forests. In our study, transitions were mainly driven by natural and anthropogenic disturbances and secondarily by climate, whereas soil characteristics exerted relatively minor constraints. While major disturbances only promoted transitions to the pioneer state, moderate disturbances increased the probability of transition from mixed to temperate states. Long-term projections of our model under the current environmental conditions indicate that moderate disturbances would promote a northward shift of the temperate forest. Moreover, disturbances reduced turnover and convergence time for all transitions, thereby accelerating forest dynamics. Contrary to our expectation, mixed to temperate transitions were not driven by temperate tree recruitment but by mortality and growth. Overall, our results suggest that moderate disturbances could catalyse rapid forest transitions and accelerate broad-scale biome shifts. K E Y W O R D S climate change, continuous-time multi-state Markov model, equilibrium, natural disturbances and logging, Québec, temperate-boreal ecotone, transient dynamics, transition probabilities | 4419 BRICE Et al. | INTRODUC TI ONGlobal climate warming has led to altitudinal and latitudinal migration of species across the globe (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011;Parmesan & Yohe, 2003). In ecotones, where transition between vegetation biomes occurs, these shifts in species distributions entail far reaching consequences for forest ecosystems (Evans & Brown, 2017). In some cases, climate-induced shifts in tree species distributions might trigger a 'regime shift' (Scheffer, Carpenter, Foley, Folke, & Walker, 2001) and transform treeless tundra into boreal forests (Harsch, Hulme, McGlone, & Duncan, 2009), tropical forests into savanna (Hirota, Holmgren, Van Nes, & Scheffer, 2011) or coniferous forests into deciduous forests (Boulanger et al., 2019). As e...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.