The comparative mechanisms and relative rates of nitrogen dioxide (N0 2 "), thiyl (RS') and sulphonyl (RS0 2 ') radical scavenging by the carotenoid antioxidants lycopene, lutein, zeaxanthin, astaxanthin and canthaxanthin have been determined by pulse radiolysis. All the carotenoids under study react with the N0 2 " radical via electron transfer to generate the carotenoid radical cation (Car' + ). In marked contrast the glutathione and 2-mercaptoethanol thiyl radicals react via a radical addition process to generate carotenoid-thiyl radical adducts |RS-Car]'. The RS0 2 ' radical undergoes both radical addition, [RS0 2 -Car|' and electron abstraction, Car" and follow the sequence HO(CH 2 ) 2 S' > RS0 2 ' > GS' > N0 2 \ Although there were some discernible trends in carotenoid reactivity for individual radicals, rate constants varied by no greater than a factor of 2.5. The mechanism and rate of scavenging is strongly dependent on the nature of the oxidising radical species but much less dependent on the carotenoid structure. © 1997 Federation of European Biochemical Societies.
؉ and radical-addition, [RSO 2 ⅐⅐⅐-carotene] ⅐ in an approximate 3:1 ratio. The -carotene radical-cation and adduct-radicals are highly resonance stabilized and undergo slow bimolecular decay to non-radical products. These carotenoidderived radicals react differently with oxygen, a factor which is expected to influence the antioxidant activity of -carotene within tissues of varying oxygen tension in vivo.
2-(3-Aminopropyl-amino) ethaneperthiol (RSSH, the perthiol analogue of the thiol radioprotector, WR-1065) reacts with the alpha-hydroxy alkyl radical (CH3)2C.OH by donating a hydrogen atom as indicated by the characterization of perthiyl radicals (RSS.; lambda max approximately 374 nm, epsilon 374 approximately 1680 +/- 20 dm3 mol-1 cm-1) by pulse radiolysis. The perthiyl radical abstracts a hydrogen from the alcohol to establish a reversible hydrogen-transfer equilibrium. This equilibrium lies predominantly on the side of radical repair since the rate constants for the forward and reverse reactions at pH 4 are: kappa(RSSH+(CH3)2C.OH) = (2.4 +/- 0.1) x 10(9) dm3 mol-1 s-1 and kappa(RSS.+(CH3)2CHOH) = (3.8 +/- 0.3) x 10(3) dm3 mol-1 s-1 respectively. The pKa (RSSH<-->RSS(-)+H+) = 6.2 +/- 0.1 was determined from the pH dependence of the rate of perthiol repair. Identical experiments have been performed with WR-1065 allowing a direct comparison of free-radical repair reactivity to be made with the parthiol analogue. At pH approximately 7.4 the reactivities of the thiol and perthiol were similar, both repairing the alcohol radical with a rate constant of approximately (2.4 +/- 0.1) x 10(8) dm3 mol-1 s-1. However, at pH 5 whilst the hydrogen-donation rate of the thiol was 15-20% higher than at pH 7.4, the perthiol reactivity was over an order of magnitude higher. The thermodynamic driving force for the observed enhanced free-radical repair reactivity of RSSH compared to RSH is attributed to the resonance stabilization energy of 8.8 kJ mol-1 within the RSS. radical. These results indicate a possible application of RSSH/RSS- as DNA-targeted antioxidants or chemoprotectors.
A series of indolequinones including derivatives of EO9 bearing various functional groups and related indole-2-carboxamides have been studied with a view to identifying molecular features which confer substrate specificity for purified human NAD(P)H:quinone oxidoreductase (DT-diaphorase), bioreductive activation to DNA-damaging species, and selectivity for DT-diaphorase-rich cells in vitro. A broad spectrum of substrate specificity exists, but minor changes to the indolequinone nucleus have a significant effect upon substrate specificity. Modifications at the 2-position are favorable in terms of substrate specificity as these positions are located at the binding site entrance as determined by molecular modeling studies. In contrast, substitutions at the (indol-3-yl)methyl position with bulky leaving groups or a group containing a chlorine atom result in compounds which are poor substrates, some of which inactivate DT-diaphorase. Modeling studies demonstrate that these groups sit close to the mechanistically important amino acids Tyr 156 and His 162 possibly resulting in either alkylation within the active site or disruption of charge-relay mechanisms. An aziridinyl group at the 5-position is essential for potency and selectivity to DT-diaphorase-rich cells under aerobic conditions. The most efficient substrates induced qualitatively greater single-strand DNA breaks in cell-free assays via a redox mechanism involving the production of hydrogen peroxide (catalase inhibitable). This damage is unlikely to form a major part of their mechanism of action in cells since potency does not correlate with extent of DNA damage. In terms of hypoxia selectivity, modifications at the 3-position generate compounds which are poor substrates for DT-diaphorase but have high hypoxic cytotoxicity ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.