In this paper, a novel idea to produce continuous breaking waves is discussed, whereby a pressure source is rotated within an annular wave pool, with the inner ring of the annulus having a sloping bathymetry to induce wave breaking. In order to refine the technique, work is being conducted to better understand the mechanics of surfable waves generated by moving pressure sources in restricted water. The pool aims to be capable of creating waves suitable for surfers from beginner to expert level, with an added benefit being by providing a safe learning environment, the overall surfing ability of the participants should be improved. The method of approach reported in this paper is the first stage of an Currently employed as Dean, Maritime at the Higher Colleges of Technology. United Arab Emirates (UAE). experimental investigation of a novel method for generating continuously surfable waves utilizing a moving pressure source. The aim was to measure and assess the waves generated by two parabolic pressure sources and a wedge-shaped wavedozer (Driscoll, A., andRenilson, M. R., 1980, The Wavedozer. A System of Generating Stationary Waves in a Circulating Water Channel, University of Glasgow, Naval Architecture and Ocean Engineering, Glasgow, UK) for their suitability for future development of continuous breaking surfable waves. The tests were conducted at the University of Tasmania (UTas) Australian Maritime College (AMC) 100 m long towing tank. The predictions and experimental results for the wave height (H) at different values of depth Froude number (Fr ) are presented in this paper. Finally, the preferred pressure source is determined based on the wave making energy efficiency and the quality of the waves for surfing.
This paper investigates the capability of a numerical approach to address the problem of designing a wave pool. The numerical approach developed has the potential to reduce the number of design alternatives which require testing by eliminating poor performing designs early in the design cycle. For the three dimensional computations in the present study, the CFD software FLUENT (which solves the RANS equations with finite-volume approach and uses the volume of fluid technique to simulate the free-surface motion) was utilized. Pressure source models in straight and round tracks were simulated. Predicted results agreed closely with experiment data.
This paper presents the background and initial investigation of a novel method for generating continuously surfable waves utilizing a moving pressure source. The idea is to produce continuous breaking waves using a pressure source that is rotated within an annular wave pool. The inner ring of the annulus has a sloping bathymetry to induce wave breaking. The underlying aim of the project is to understand the wave mechanics, to allow the creation of repeatable continuous “steady-state” waves.The immediate benefits of this scientific investigation will be realized by engineering the results into a surfing wave pool for recreational health use. The longer-term benefits will be developed through fundamental investigations of breaking waves.Preliminary experiments into creating a continuous steady-state wave were conducted in a towing tank using a series of pressure sources. The results have then been used to validate an initial numerical study. In addition, qualitative, full-scale experiments were carried out using a fishing vessel in a river estuary. This paper reports on the research conducted to date and plans for future work, including conducting experiments utilizing a 10-metre-diameter scale model.
In this paper, a novel idea to produce continuous breaking waves is discussed, whereby a pressure source is rotated within an annular wave pool. The concept was that the pressure source generates non-breaking waves that propagate inward to the inner ring of the annulus, where a sloping bathymetry (beach) triggers wave breaking. In order to refine the technique, research was conducted to better understand the mechanics of waves generated by a pressure source moving in a circular track in a constrained waterway, the transformation of these waves as they travel across the channel and the effect of the sloping beach on the wave quality for surfing. The quality of the waves was defined in terms of wave height, speed and shape, with the desired aim to create plunging waves, known as “barrels”, that are highly desired by surfers. Surfers also require a long steep crestline or “wall”, to allow a full range of manoeuvres to be performed. Finally, the pool needed to be able to create waves suitable for surfers from beginner to expert level, defined in terms of both the wave height and angle between the wave break point angle and the beach, known a peel angle. The primary novel outcome of the research conducted was to be able to design a pressure source that most efficiently imparted wave making energy into the water, and thus generated the largest possible waves whilst travelling at the required speed for surfing. The major finding was that the design parameters are generally in competition, and to determine a balance of limiting values, the design parameters cannot be considered in isolation. Therefore, a set of empirical relationships between the design parameters were developed to allow the pool to be designed for a combination of desired wave height at the breakpoint, wave shape and given pool radius. The limiting values for the parameters were determined experimentally, with the wave life-cycle from generation through transformation to wave breaking and dissipation used to focus the investigation. Scale model experiments were conducted in both linear and circular tracks. In addition to taking quantitative measurement of wave height and current formation, a method of qualitatively scoring the waves was developed to allow various pressure source shapes, operating conditions and bathymetries to be compared in terms of their suitability for surfing. The best quality waves were produced by a wedge-shaped wavedozer pressure source, such as the device detailed in Driscoll and Renilson [1]. Blockage, defined as the pressure source cross sectional area to channel cross-sectional area, was found to have a significant limitation on the generation of high quality waves suitable for surfing in a constrained waterway. Lateral wave decay, length and depth Froude Numbers also strongly influenced the waves during their life-cycle. Fundamentally, it was determined that only a very small range of design parameter values produce the desired high and shapely waves in the extremely constrained waterway under consideration.
In this paper, a novel idea to produce continuous breaking waves is discussed, whereby a pressure source is rotated within an annular wave pool. The concept is that the inner ring of the annulus has a sloping bathymetry to induce wave breaking from the wake of the pressure source. In order to refine the technique, work is being conducted to better understand the mechanics of surfable waves generated by moving pressure sources in restricted water. This paper reports on the first stage of an experimental investigation of a novel method for generating continuously surfable waves utilising a moving pressure source. The aim was to measure and assess the waves generated by two parabolic pressure sources and a wavedozer [1] for their suitability for future development of continuous breaking surfable waves. The tests were conducted at the Australian Maritime College (AMC), University of Tasmania (UTas) 100 metre long towing tank. The experimental results as variations in wave height (H) divided by water depth (h) as functions of depth Froude number (Frh) and h, together with predictions from both methods, are presented in this paper. Finally, measures of the wave making energy efficiency of each pressure source, and the surfable quality of the waves generated by it, were developed and are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.