The use of ontologies for information sharing is well documented in the literature, but the lack of a comprehensive and systematic methodology for constructing product ontologies has limited the process of developing ontologies for design artifacts. In this paper we introduce the Product Family Ontology Development Methodology (PFODM), a novel methodology to develop formal product ontologies using the Semantic Web paradigm. Within PFODM, Formal Concept Analysis (FCA) is used first to identify similarities among a finite set of design artifacts based on their properties and then to develop and refine a product family ontology using Web Ontology Language (OWL). A family of seven one-time-use cameras is used to demonstrate the steps of the PFODM to construct such an ontology. The benefit of PFODM lies in providing a systematic and consistent methodology for constructing ontologies to support product family design. The resulting ontologies provide a hierarchical conceptual clustering of related design artifacts, which is particularly advantageous for product family design where parts, processes, and most important, information is intentionally shared and reused to reduce complexity, lead-time, and development costs. Potential uses of the resulting ontologies and FCA representations within product family design are also discussed.
-Navigating in rough terrain is a complex task that requires the robot to be considered as a holistic system. Algorithms, which don't consider the physical dimensions and capabilities of the mobile robot lead to inefficient motion and suffer from a lack of robustness. A physical model of the robot is necessary for trajectory control. In this paper, quasi-static modeling of a six-wheeled robot with a passive suspension mechanism is presented together with a method for selecting the optimal torques considering the system constraints: maximal and minimal torques, positive normal forces. The aim of this method is to limit wheel slip and to improve climbing capabilities. The modeling and the optimization are applied to the Shrimp rover.
Many companies constantly struggle to find cost-effective solutions to satisfy the diverse demands of their customers. In this paper, we report on two recent industry-focused conferences that emphasized platform design, development, and deployment as a means to increase variety, shorten lead-times, and reduce development and production costs. The first conference, Platform Management for Continued Growth, was held November–December 2004 in Atlanta, Georgia, and the second, 2005 Innovations in Product Development Conference — Product Families and Platforms: From Strategic Innovation to Implementation, was held in November 2005 in Cambridge, Massachusetts. The two conferences featured presentations from academia and more than 20 companies who shared their successes and frustrations with platform design and deployment, platform-based product development, and product family planning. Our intent is to provide a summary of the common themes that we observed in these two conferences. Based on this discussion, we extrapolate upon industry’s needs in platform design, development, and deployment to stimulate and catalyze future work in this important area of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.