Stimuli that induce rhythmic firing in trigeminal neurons also increase astrocytic coupling and reveal networks that define the boundaries of this particular population. Rhythmic firing depends on astrocytic coupling which in turn depends on S100β. In many nervous functions that rely on the ability of neuronal networks to generate a rhythmic pattern of activity, coordination of firing is an essential feature. Astrocytes play an important role in some of these networks, but the contribution of astrocytic coupling remains poorly defined. Here we investigate the modulation and organization of astrocytic networks in the dorsal part of the trigeminal main sensory nucleus (NVsnpr), which forms part of the network generating chewing movements. Using whole-cell recordings and the dye coupling approach by filling a single astrocyte with biocytin to reveal astrocytic networks, we showed that coupling is limited under resting conditions, but increases importantly under conditions that induce rhythmic firing in NVsnpr neurons. These are: repetitive electrical stimulation of the sensory inputs to the nucleus, local application of NMDA and decrease of extracellular Ca . We have previously shown that rhythmic firing induced in NVsnpr neurons by these stimuli depends on astrocytes and their Ca -binding protein S100β. Here we show that extracellular blockade of S100β also prevents the increase in astrocytic coupling induced by local application of NMDA. Most of the networks were small and remained confined to the functionally distinct area of dorsal NVsnpr. Disrupting coupling by perfusion with the nonspecific gap junction blocker, carbenoxolone or with GAP26, a selective inhibitor of connexin 43, mostly expressed in astrocytes, abolished NMDA-induced rhythmic firing in NVsnpr neurons. These results suggest that astrocytic coupling is regulated by sensory inputs, necessary for neuronal bursting, and organized in a region specific manner.
Inputs impinging on layer 5 pyramidal neurons perform essential operations as these cells represent one of the most important output carriers of the cerebral cortex. However, the contribution of astrocytes, a type of glial cell, to these operations is poorly documented. r Here we found that optogenetic activation of astrocytes in the vicinity of layer 5 in the mouse primary visual cortex induces spiking in local pyramidal neurons through Nav1.6 ion channels and prolongs the responses elicited in these neurons by stimulation of their distal inputs in cortical layer 1. r This effect partially involved glutamatergic signalling but relied mostly on the astrocytic calcium-binding protein S100β, which regulates the concentration of calcium in the extracellular space around neurons. r These findings show that astrocytes contribute to the fundamental computational operations of the cortex by acting on the ionic environment of neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.