Inputs impinging on layer 5 pyramidal neurons perform essential operations as these cells represent one of the most important output carriers of the cerebral cortex. However, the contribution of astrocytes, a type of glial cell, to these operations is poorly documented. r Here we found that optogenetic activation of astrocytes in the vicinity of layer 5 in the mouse primary visual cortex induces spiking in local pyramidal neurons through Nav1.6 ion channels and prolongs the responses elicited in these neurons by stimulation of their distal inputs in cortical layer 1. r This effect partially involved glutamatergic signalling but relied mostly on the astrocytic calcium-binding protein S100β, which regulates the concentration of calcium in the extracellular space around neurons. r These findings show that astrocytes contribute to the fundamental computational operations of the cortex by acting on the ionic environment of neurons.
Accumulating evidence implicates the parafascicular nucleus of the thalamus (Pf) in basal ganglia (BG)-related functions and pathologies. Despite Pf connectivity with all BG components, most attention is focused on the thalamostriatal system and an integrated view of thalamic information processing in this network is still lacking. Here, we addressed this question by recording the responses elicited by Pf activation in single neurons of the substantia nigra pars reticulata (SNr), the main BG output structure in rodents, in anesthetized mice. We performed optogenetic activation of Pf neurons innervating the striatum, the subthalamic nucleus (STN), or the SNr using virally mediated transcellular delivery of Cre from injection in either target in Rosa26-LoxP-stop-ChR2-EYFP mice to drive channelrhodopsin expression. Photoactivation of Pf neurons connecting the striatum evoked an inhibition often followed by an excitation, likely resulting from the activation of the trans-striatal direct and indirect pathways, respectively. Photoactivation of Pf neurons connecting the SNr or the STN triggered one or two early excitations, suggesting partial functional overlap of trans-subthalamic and direct thalamonigral projections. Excitations were followed in about half of the cases by an inhibition that might reflect recruitment of intranigral inhibitory loops. Finally, global Pf stimulation, electrical or optogenetic, elicited similar complex responses comprising up to four components: one or two short-latency excitations, an inhibition, and a late excitation. These data provide evidence for functional connections between the Pf and different BG components and for convergence of the information processed through these pathways in single SNr neurons, stressing their importance in regulating BG outflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.