This paper provides an extensive runtime, accuracy, and noise analysis of Computed Tomography (CT) reconstruction algorithms using various High-Performance Computing (HPC) frameworks such as: "conventional" multi-core, multi threaded CPUs, Compute Unified Device Architecture (CUDA), and DirectX or OpenGL graphics pipeline programming. The proposed algorithms exploit various built-in hardwired features of GPUs such as rasterization and texture filtering. We compare implementations of the Filtered Back-Projection (FBP) algorithm with fan-beam geometry for all frameworks. The accuracy of the reconstruction is validated using an ACR-accredited phantom, with the raw attenuation data acquired by a clinical CT scanner. Our analysis shows that a single GPU can run a FBP reconstruction 23 time faster than a 64-core multi-threaded CPU machine for an image of 1024 × 1024. Moreover, directly programming the graphics pipeline using DirectX or OpenGL can further increases the performance compared to a CUDA implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.