The chemical changes which occur during the process of carious destruction of enamel are complex due to a number of factors. First, substituted hydroxyapatite, the main component of dental enamel, can behave in a very complex manner during dissolution. This is due not only to its ability to accept substituent ions but also to the wide range of calcium phosphate species which can form following dissolution. In addition, the composition, i.e., the extent of substitution, changes throughout enamel in the direction of carious attack, i.e., from surface to interior. Both surface and positively birefringent zones of the lesion clearly illustrate that carious destruction is not simple dissolution. Selective dissolution of soluble minerals occurs, and there is the probability of reprecipitation. The role of fluoride here is crucial in that not only does it protect enamel per se but also its presence in solution means that rather insoluble fluoridated species can form very easily, encouraging redeposition. The role of organic material clearly needs further investigation, but there is the real possibility of both inhibition of repair and facilitation of redeposition. For the future, delivering fluoride deep into the lesion would appear to offer the prospect of improved repair. This would entail a delivery vehicle which solved the problem of fluoride uptake by apatite at the tooth surface. Elucidation of the role of organic material may also reveal putative mechanisms for encouraging repair and/or protecting the enamel mineral.
Rationally designed l3-sheet-forming peptides that spontaneously form three-dimensional fibrillar scaffolds in response to specific environmental triggers may potentially be used in skeletal tissue engineering, including the treatment/prevention of dental caries, via bioactive surface groups. We hypothesized that infiltration of caries lesions with monomeric low-viscosity peptide solutions would be followed by in situ polymerization triggered by conditions of pH and ionic strength, providing a biomimetic scaffold capable of hydroxyapatite nucleation, promoting repair. Our aim was to determine the effect of an anionic peptide applied to caries-like lesions in human dental enamel under simulated intra-oral conditions of pH cycling. Peptide treatment significantly increased net mineral gain by the lesions, due to both increased remineralization and inhibition of demineralization over a five-day period. The assembled peptide was also capable of inducing hydroxyapatite nucleation de novo. The results suggest that self-assembling peptides may be useful in the modulation of mineral behavior during in situ dental tissue engineering.
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.