[1] The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges as it orbits the Earth. This instrument is a scientific payload on the MicroLab-1 satellite that was launched into a 70°inclination low Earth orbit in April 1995. Given the orbital trajectory of the satellite, most regions of the Earth are observed by the OTD instrument more than 400 times during a 1 year period, and the average duration of each observation is 2 min. The OTD instrument optically detects lightning flashes that occur within its 1300 Â 1300 km 2 field of view during both day and night conditions. A statistical examination of OTD lightning data reveals that nearly 1.4 billion flashes occur annually over the entire Earth. This annual flash count translates to an average of 44 ± 5 lightning flashes (intracloud and cloud-to-ground combined) occurring around the globe every second, which is well below the traditional estimate of 100 fl s À1 that was derived in 1925 from world thunder day records. The range of uncertainty for the OTD global totals represents primarily the uncertainty (and variability) in the flash detection efficiency of the instrument. The OTD measurements have been used to construct lightning climatology maps that demonstrate the geographical and seasonal distribution of lightning activity for the globe. An analysis of this annual lightning distribution confirms that lightning occurs mainly over land areas, with an average land/ocean ratio of $10:1. The Congo basin, which stands out year-round, shows a peak mean annual flash density of 80 fl km À2 yr À1 in Rwanda, and includes an area of over 3 million km 2 exhibiting flash densities greater than 30 fl km À2 yr À1 (the flash density of central Florida). Lightning is predominant in the northern Atlantic and western Pacific Ocean basins year-round where instability is produced from cold air passing over warm ocean water. Lightning is less frequent in the eastern tropical Pacific and Indian Ocean basins where the air mass is warmer. A dominant Northern Hemisphere summer peak occurs in the annual cycle, and evidence is found for a tropically driven semiannual cycle.
Observations have been made of a new terrestrial phenomenon: brief (-millisecond), intense flashes of gamma rays, observed with space-borne detectors. These flashes must originate at altitudes in the atmosphere above at least 30 km in order to be observable by orbiting detectors aboard the Compton Gamma-Ray Observatory (CGRO). At least a dozen events have been detected over the past 2 years. The photon spectra from the events are very hard and are consistent with bremsstrahlung emission from energetic (MeV) electrons. The most likely origin of these high energy electrons, while speculative at this time, is a rare type of high altitude electrical discharge above thunderstorm regions. 3 / 9 3 0064142https://ntrs.nasa.gov/search.jsp?R=19960001309 2018-05-11T01:44:02+00:00ZWe report here the serendipedous detection of high-energy photons from the Earth's upper atmosphere, observed by the Burst and Transient Source Experiment1 (BATSE) on the CGRO.Their apparent correlation with storm systems leads us to implicate as their cause, electrical discharges from these systems to the stratosphere/ionosphere. Runaway discharges to the ionosphere had been predicted in the early literaturG3 and modeled in detail pre~iously.~ These gamma-ray events may also be related to recently recorded optical discharge phenomena above thunderstorms5 and to other cloud-to-stratosphere discharges that have been reported in the past.6-7The Compton Observatory was launched in April 199 1 to perform observations of celestial gamma-ray sources. The BATSE experiment1 is one of four experiments on the observatory. It serves as an all-sky monitor and has detected over 800 cosmic gamma-ray bursts, several hard xray transients, numerous persistent and pulsed hard x-ray sources and several thousand solar flares. In addition to these celestial sources, on m occasions BATSE has responded to gammaray flashes from the Earth, previously unreported.BATSE consists of an array of eight detector modules located at the corners of the observatory, arranged to provide maximum unobstructed sky coverage. The scintillation detectors are sensitive to photons with energies above 20 keV. It is believed that prior instrumentation and experiments were incapable of detecting this phenomenon for several reasons, or these events were overlooked as being spurious. Most detectors used in high-energy astronomy are collimated and would likely have missed these rare events andor data are not analyzed during Earth-viewing times. Also, the temporal resolution of most experiments would not have been able to respond to these very brief events and would thus have had p r signal-to-noise when sampled with coarser time resolution. The BATSE array of multiple, independent detectors viewing different directions gives us confidence in the reality of these events as opposed to some instrumental or spacecraft effect such as electronic noise. The multiple, wide-field detectors also allow a direction determination to be made for each events The observed counting rate ratios of the detec...
ABSTRACT:The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) is America’s next-generation geostationary advanced imager. GOES-R launched on 19 November 2016. The ABI is a state-of-the-art 16-band radiometer, with spectral bands covering the visible, near-infrared, and infrared portions of the electromagnetic spectrum. Many attributes of the ABI—such as spectral, spatial, and temporal resolution; radiometrics; and image navigation/registration—are much improved from the current series of GOES imagers. This paper highlights and discusses the expected improvements of each of these attributes. From ABI data many higher-level-derived products can be generated and used in a large number of environmental applications. The ABI’s design allows rapid-scan and contiguous U.S. imaging automatically interleaved with full-disk scanning. In this paper the expected instrument attributes are covered, as they relate to signal-to-noise ratio, image navigation and registration, the various ABI scan modes, and other parameters. There will be several methods for users to acquire GOES-R imagery and products depending on their needs. These include direct reception of the imagery via the satellite downlink and an online-accessible archive. The information from the ABI on the GOES-R series will be used for many applications related to severe weather, tropical cyclones and hurricanes, aviation, natural hazards, the atmosphere, the ocean, and the cryosphere. The ABI on the GOES-R series is America’s next-generation geostationary advanced imager and will dramatically improve the monitoring of many phenomena at finer time and space scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.