[1] The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges as it orbits the Earth. This instrument is a scientific payload on the MicroLab-1 satellite that was launched into a 70°inclination low Earth orbit in April 1995. Given the orbital trajectory of the satellite, most regions of the Earth are observed by the OTD instrument more than 400 times during a 1 year period, and the average duration of each observation is 2 min. The OTD instrument optically detects lightning flashes that occur within its 1300 Â 1300 km 2 field of view during both day and night conditions. A statistical examination of OTD lightning data reveals that nearly 1.4 billion flashes occur annually over the entire Earth. This annual flash count translates to an average of 44 ± 5 lightning flashes (intracloud and cloud-to-ground combined) occurring around the globe every second, which is well below the traditional estimate of 100 fl s À1 that was derived in 1925 from world thunder day records. The range of uncertainty for the OTD global totals represents primarily the uncertainty (and variability) in the flash detection efficiency of the instrument. The OTD measurements have been used to construct lightning climatology maps that demonstrate the geographical and seasonal distribution of lightning activity for the globe. An analysis of this annual lightning distribution confirms that lightning occurs mainly over land areas, with an average land/ocean ratio of $10:1. The Congo basin, which stands out year-round, shows a peak mean annual flash density of 80 fl km À2 yr À1 in Rwanda, and includes an area of over 3 million km 2 exhibiting flash densities greater than 30 fl km À2 yr À1 (the flash density of central Florida). Lightning is predominant in the northern Atlantic and western Pacific Ocean basins year-round where instability is produced from cold air passing over warm ocean water. Lightning is less frequent in the eastern tropical Pacific and Indian Ocean basins where the air mass is warmer. A dominant Northern Hemisphere summer peak occurs in the annual cycle, and evidence is found for a tropically driven semiannual cycle.
[1] Nitrogen oxides (NO x ≡ NO + NO 2 ) produced by lightning make a major contribution to the global production of tropospheric ozone and OH. Lightning distributions inferred from standard convective parameterizations in global chemical transport models (CTMs) fail to reproduce observations from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) satellite instruments. We present an optimal regional scaling algorithm for CTMs to fit the lightning NO x source to the satellite lightning data in a way that preserves the coupling to deep convective transport. We show that applying monthly scaling factors over $37 regions globally significantly improves the tropical ozone simulation in the GEOS-Chem CTM as compared to a simulation unconstrained by the satellite data and performs equally well to a simulation with local scaling. The coarse regional scaling preserves sufficient statistics in the satellite data to constrain the interannual variability (IAV) of lightning. After processing the LIS data to remove their diurnal sampling bias, we construct a monthly time series of lightning flash rates for 1998-2010 and 35 S-35 N. We find a correlation of IAV in total tropical lightning with El Niño but not with the solar cycle or the quasi-biennial oscillation. The global lightning NO x source AE IAV standard deviation in GEOS-Chem is 6.0 AE 0.5 Tg N yr À1 , compared to 5.5 AE 0.8 Tg N yr À1 for the biomass burning source. Lightning NO x could have a large influence on the IAV of tropospheric ozone because it is released in the upper troposphere where ozone production is most efficient.
ABSTRACT:The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.