Reliable calculations of redox potentials could provide valuable insight into catalytic mechanisms of electrochemically active transition-metal complexes as well as guidelines for the design of new electrocatalysts. However, the correlation between theoretical and experimental data is often uncertain, since redox properties depend strongly on experimental conditions of electrochemical measurements, including the nature of the solvent, electrolyte, and working electrode. Here, we show that the use of internal references allows for quantitative theoretical predictions of redox potentials with standard deviations σ comparable to typical experimental errors of cyclic voltammetry measurements. Agreement for first-, second-, and third-row transition-metal complexes is demonstrated even at a rather modest level of density functional theory (σ = 64 mV for the UB3LYP/6-311G* level). This is shown for a series of benchmark redox couples, including ([MCp 2 ] 0/+ (Cp = η 5 -cyclopentadienyl), [MCp* 2 ] 0/+ (Cp* = η 5 -1,2,3,4,5pentamethylcyclopentadienyl), [M(bpy) 3 ] 2+/3+ (bpy =2,2′-bipyridine), and [Ir(acac) 3 ] 0/+ (acac = acetylacetonate), with M = Fe, Co, Ni, Ru, Os, or Ir) in various nonaqueous solvents [acetonitrile (MeCN), dimethyl sulfoxide (DMSO), and dichloromethane (DCM)].
The behavior of crystalline nanoparticles depends strongly on which facets are exposed. Some facets are more active than others, but it is difficult to selectively isolate particular facets. This study provides fundamental insights into photocatalytic and photoelectrochemical performance of three types of TiO(2) nanoparticles with predominantly exposed {101}, {010}, or {001} facets, where 86-99% of the surface area is the desired facet. Photodegradation of methyl orange reveals that {001}-TiO(2) has 1.79 and 3.22 times higher photocatalytic activity than {010} and {101}-TiO(2), respectively. This suggests that the photochemical performance is highly correlated with the surface energy and the number of under-coordinated surface atoms. In contrast, the photoelectrochemical performance of the faceted TiO(2) nanoparticles sensitized with the commercially available MK-2 dye was highest with {010}-TiO(2) which yielded an overall cell efficiency of 6.1%, compared to 3.2% for {101}-TiO(2) and 2.6% for {001}-TiO(2) prepared under analogous conditions. Measurement of desorption kinetics and accompanying computational modeling suggests a stronger covalent interaction of the dye with the {010} and {101} facets compared with the {001} facet. Time-resolved THz spectroscopy and transient absorption spectroscopy measure faster electron injection dynamics when MK-2 is bound to {010} compared to other facets, consistent with extensive computational simulations which indicate that the {010} facet provides the most efficient and direct pathway for interfacial electron transfer. Our experimental and computational results establish for the first time that photoelectrochemical performance is dependent upon the binding energy of the dye as well as the crystalline structure of the facet, as opposed to surface energy alone.
Recent breakthroughs in electrochemical studies have reported aqueous CO2 reduction to formic acid, formaldehyde, and methanol at low overpotentials (-0.58 V versus SCE), with a Pt working electrode in acidic pyridine (Pyr) solutions. We find that CO2 is reduced by H atoms bound to the Pt surface that are transferred as hydrides to CO2 in a proton-coupled hydride transfer (PCHT) mechanism activated by pyridinium (PyrH(+)), CO2 + Pt-H + PyrH(+) + e(-) → Pyr + Pt + HCO2H. The surface-bound H atoms consumed by CO2 reduction is replenished by the one-electron reduction of PyrH(+) through the proton-coupled electron transfer (PCET), PyrH(+) + Pt + e(-) → Pyr + Pt-H. Pyridinium is essential to establish a high concentration of Brønsted acid in contact with CO2 and with the Pt surface, much higher than the concentration of free protons. These findings are particularly relevant to generate fuels with a carbon-neutral footprint.
We present the first analysis of performance of hydroxamate linkers as compared to carboxylate and phosphonate groups when anchoring ruthenium-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight into structure/function relationships that are critical for cell performance. Our DSSCs have been produced by using newly synthesized dye molecules and characterized by combining measurements and simulations of experimental current density-voltage (J-V) characteristic curves. We show that the choice of anchoring group has a direct effect on the overall sunlight-to-electricity conversion efficiency (η), with hydroxamate anchors showing the best performance. Solar cells based on the pyridyl-hydroxamate complex exhibit higher efficiency since they suppress electron transfer from the photoanode to the electrolyte and have superior photoinjection characteristics. These findings suggest that hydroxamate anchoring groups should be particularly valuable in DSSCs and photocatalytic applications based on molecular adsorbates covalently bound to semiconductor surfaces. In contrast, analogous acetylacetonate anchors might undergo decomposition under similar conditions suggesting limited potential in future applications.
The electrical transport in amorphous titanium dioxide (a-TiO 2 ) thin films deposited by atomic-layer deposition (ALD), and across heterojunctions of p + -Si|a-TiO 2 |metal substrates that had various top metal contacts, has been characterized by AC conductivity, temperaturedependent DC conductivity, space-charge-limited current (SCLC) spectroscopy, electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and current density versus voltage (J-V) characteristics. Amorphous TiO 2 films were fabricated using either tetrakis(dimethylamido)-titanium (TDMAT) with a substrate temperature of 150 °C or TiCl 4 with a substrate temperature of 50, 100, or 150 °C. EPR spectroscopy of the films showed that the Ti 3+ concentration varied with the deposition conditions, and increases in the concentration of Ti 3+ in the films correlated with increases in film conductivity. Valence-band spectra for the a-TiO 2 films exhibited a defect-state peak below the conduction-band minimum (CBM), and increases in the intensity of this peak correlated with increases in the Ti 3+ concentration measured by EPR as well as with increases in film conductivity. The temperature dependent conduction data showed Arrhenius behavior at room temperature with an activation energy that decreased with decreasing temperature, suggesting that conduction did not occur primarily through either the valence or conduction bands. The data from all of the measurements are consistent with a Ti 3+ defect-mediated transport mode involving a hopping mechanism with a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.