Background Despite significant progress in diagnostics and therapeutics, over fifty thousand patients die from colorectal cancer annually. Hence there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Methods Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase(LDH) release and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F dependent genes, E2F1-Rb binding and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Results Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically we demonstrate that at low concentrations, triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Conclusion Triptolide and Minnelide are effective against colon cancer in multiple pre-clinical models.
In patients with sepsis-associated AKI, appropriate fluid resuscitation and maintenance of blood pressure are important to prevent further kidney damage. Despite multiple clinical trials, the mechanisms of sepsis-associated AKI and the best treatment options remain unclear.
Several mechanisms have evolved to ensure the survival of cells under adverse conditions. The heat shock response is one such evolutionarily conserved survival mechanism. Heat shock factor-1 (HSF1) is a transcriptional regulator of the heat shock response. By the very nature of its prosurvival function, HSF1 may contribute to the pathogenesis of cancer. The current study investigates the role of HSF1 in the pathogenesis of pancreatobiliary tumors. HSF1 was downregulated in pancreatic cancer (MIA PaCa-2 and S2-013) and cholangiocarcinoma (KMBC and KMCH) cell lines by HSF1-specific small interfering RNA (siRNA). Nonsilencing siRNA was used as control. The effect of HSF1 downregulation on viability and apoptosis parameters, i.e., annexin V, terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling (TUNEL), and caspase-3, was measured. To evaluate the cancer-specific effects of HSF1, the effect of HSF1 downregulation on normal human pancreatic ductal cells was also evaluated. HSF1 is abundantly expressed in human pancreatobiliary cancer cell lines, as well as in pancreatic cancer tissue, as demonstrated by Western blot and immunohistochemistry, respectively. Inhibition of HSF1 expression by the HSF1 siRNA sequences leads to time-dependent death in pancreatic and cholangiocarcinoma cell lines. Downregulation of HSF1 expression induces annexin V and TUNEL positivity and caspase-3 activation, suggesting activation of a caspase-dependent apoptotic pathway. Although caspase-3 inhibition protects against cell death induced by HSF1 expression, it does not completely prevent it, suggesting a role for caspase-independent cell death. HSF1 plays a prosurvival role in the pathogenesis of pancreatobiliary tumors. Modulation of HSF1 activity could therefore emerge as a novel therapeutic strategy for cancer treatment.
Background Our recent work demonstrated that treatment of neurobastoma with triptolide causes apoptotic cell death in vitro and decreased tumor size in vivo. Triptolide therapy has been associated with reduced expression of Hsp-70, suggesting a mechanism of cell killing involving Hsp-70 inhibition. The principal objective of this study was to investigate the role of Hsp-70 in triptolide-mediated cell death in neuroblastoma. Materials and Methods Neuroblastoma cells were transfected with Hsp-70-specific siRNA. Viability, caspase activity, and phosphatidylserine externalization were subsequently measured. An orthotopic, syngeneic murine tumor model was developed, and randomized mice received daily injections of triptolide or vehicle. At 21 days, mice were sacrificed. Immunohistochemisty was used to characterize Hsp-70 levels in residual tumors, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to identify cells undergoing apoptosis. Results Targeted silencing of Hsp-70 with siRNA significantly decreased cellular viability, augmented caspase-3 activity, and resulted in increased Annexin-V staining. These effects parallel those findings obtained following treatment with triptolide. Residual tumors from triptolide-treated mice showed minimal staining with Hsp-70 immunohistochemistry, while control tumors stained prominently. Tumors from treated mice demonstrated marked staining with the TUNEL assay, while control tumors showed no evidence of apoptosis. Conclusions Use of siRNA to suppress Hsp-70 expression in neuroblastoma resulted in apoptotic cell death, similar to the effects of triptolide. Residual tumors from triptolide-treated mice expressed decreased levels of Hsp-70 and demonstrated significant apoptosis. These findings support the hypothesis that Hsp-70 inhibition plays a significant role in triptolide-mediated neuroblastoma cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.