Urban environments typically exhibit large atmospheric pollution variation, in both space and time. In contrast to traditional monitoring networks suffering from a limited spatial coverage, mobile platforms enable personalized high-resolution monitoring, providing valuable insights into personal atmospheric pollution exposure, and the identification of potential pollution hotspots. This study evaluated personal cyclist exposure to UFPs, BC and heavy metals whilst commuting near Antwerp, Belgium, by performing mobile measurements with wearable black carbon (BC) and ultrafine particle (UFP) instruments. Loaded micro-aethalometer filterstrips were chemically analysed and the inhaled pollutant dose determined from the exhibited heart rate. Considerable spatial pollutant variation was observed along the travelled routes, with distinct contributions from spatial factors (e.g. traffic intersections, urban park and market) and temporary events. On average 300% higher BC, 20% higher UFP and changing elemental concentrations are observed along the road traffic route (RT), when compared to the bicycle highway route (BH). Although the overall background pollution determines a large portion of the experienced personal exposure (in this case 53% for BC and 40% for UFP), cyclists can influence their personal atmospheric pollution exposure, by selecting less exposed commuting routes. Our results, hereby, strengthen the body of evidence in favour of further policy investments in isolated bicycle infrastructure.
Atmospheric dust deposition on plants enables the collection of site-specific particulate matter (PM).Knowing the morphology and composition of PM aids in disclosing their emitting sources as well as the associated human health risk. Therefore, this study aimed for a leaf-level holistic analysis of dust accumulation on plant leaves. Plant species (ivy and strawberry) with distinct leaf macro-and micromorphology were exposed during three months at a moderate road traffic site in Antwerp, Belgium.Leaves collected every three weeks were analyzed for their magnetic signature, morphology and elemental content, by a combination of techniques (biomagnetic analyses, ED-XRF, HR-ICP-MS, SEM). Dust accumulation on the leaves was observed both visually (SEM) and magnetically, while the metal enrichment was limited (only evident for Cr) and more variable over time. Temporal dynamics during the second half of the exposure period, due to precipitation events and reduction of atmospheric pollution input, were evidenced in our results (elements/magnetically/SEM). Ivy accumulated more dust than strawberry leaves and seemed less susceptible to wash-off, even though strawberry leaves contain trichomes and a rugged micromorphology, leaf traits considered to be important for capturing PM. The magnetic enrichment (in small-grained, SD/PSD magnetite particles), on the other hand, was not species-specific, indicating a common contributing source.Variations in pollution contributions, meteorological phenomena, leaf traits, particle deposition (and encapsulation) versus micronutrients depletion, are discussed in light of the conducted monitoring campaign. Although not completely elucidative, the complex, multifactorial process of leaf dust accumulation can better be understood through a combination of techniques.
Keywords
Atmospheric dust deposition • PM leaf accumulation • Biomonitoring • Environmental magnetism • ED-XRF • HR-ICP-MS
Highlights• Ivy and strawberry leaves followed up every three weeks for a three months period. • Dust accumulation observed visually and magnetically, yet limited in metal built-up.• Ivy accumulated more than strawberry, with the latter more susceptible to wash-off.• Site-source and precipitation dynamics over time were detected by leaf biomonitoring.• Combination of techniques assists in understanding the complex leaf-dust interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.