Measurements in marine stratocumulus over the northeast Pacific help scientists unravel the mysteries of this important cloud regime.T he stratocumulus-topped boundary layer (hereafter the STBL), which prevails in the subtropics in regions where the underlying ocean is much colder than the overlying atmosphere, is thought to be an important component of the climate system. Perhaps most striking is its impact on the radiative balance at the top of the atmosphere. The seasonally averaged net cloud radiative forcing from the STBL has been estimated to be as large as 70 W nr 2 (Stephens and Greenwald 1991), more than an order of magnitude larger than the radiative forcing associated with a doubling of atmospheric C0 2 . This means that even rather subtle sensitivities of the STBL to changes in the properties of the atmospheric aero-
Carnobacteriocin B2 (CbnB2), a type IIa bacteriocin, is a 48 residue antimicrobial peptide from the lactic acid bacterium Carnobacterium pisicola LV17B. Type IIa bacteriocins have a conserved YGNGVXC sequence near the N-terminus and usually contain a disulfide bridge. CbnB2 seemed to be unique in that its two cysteines (Cys9 and Cys14) could be isolated as free thiols [Quadri et al. (1994) J. Biol. Chem. 26, 12204-12211]. To establish the structural consequences of the presence or absence of a disulfide bridge and to investigate if the YGNGVXC sequence is a receptor-binding motif [Fleury et al. (1996) J. Biol. Chem. 271, 14421-14429], the three-dimensional solution structure of CbnB2 was determined by two-dimensional (1)H nuclear magnetic resonance (NMR) techniques. Mass spectroscopic and thiol modification experiments on CbnB2 and on model peptides, in conjunction with activity measurements, were used to verify the redox status of CbnB2. The results show that CbnB2 readily forms a disulfide bond and that this peptide has full antimicrobial activity. NMR results indicate that CbnB2 in trifluoroethanol (TFE) has a well-defined central helical structure (residues 18-39) but a disordered N terminus. Comparison of the CbnB2 structure with the refined solution structure of leucocin A (LeuA), another type IIa bacteriocin, indicates that the central helical structure is conserved between the two peptides despite differences in sequence but that the N-terminal structure (a proposed receptor binding site) is not. This is unexpected because LeuA and CbnB2 exhibit >66% sequence identity in the first 24 residues. This suggests that the N-terminus, which had been proposed [Fleury et al. (1996) J. Biol. Chem. 271, 14421-14429] to be a receptor binding site of type IIa bacteriocins, may not be directly involved and that recognition of the amphiphilic helical portion is the critical feature.
Pentalene (1) is generated for the first time in argon matrices by photocleavage of the corresponding dimer (2). It is found that the cleavage occurs in two distinct steps, the first of which leads presumably to a diradical. 1 is characterized by its electronic and vibrational absorption spectra which are assigned and interpreted with reference to different quantum chemical calculations. These show that the first two excited states of pentalene involve a doubly excited configuration which had been ignored in previous discussion of the electronic structure. Due to the antiaromatic nature of pentalene, the distortive force of the π-electrons which favor a C 2h structure with localized single and double bonds predominates over the effect of the σ-electrons which drive the molecule to a D 2h structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.