Prostate cancer (PCa) is the second most frequent type of cancer found in men worldwide, with around one in nine men being diagnosed with PCa within their lifetime. PCa often shows no symptoms in its early stages and its diagnosis techniques are either invasive, resource intensive, or has low efficacy, making widespread early detection onerous. Inspired by the recent success of deep convolutional neural networks (CNN) in computer aided detection (CADe), we propose a new CNN based framework for incidental detection of clinically significant prostate cancer (csPCa) in patients who had a CT scan of the abdomen/pelvis for other reasons. While CT is generally considered insufficient to diagnose PCa due to its inferior soft tissue characterisation, our evaluations on a relatively large dataset consisting of 139 clinically significant PCa patients and 432 controls show that the proposed deep neural network pipeline can detect csPCa patients at a level that is suitable for incidental detection. The proposed pipeline achieved an area under the receiver operating characteristic curve (ROC-AUC) of 0.88 (95% Confidence Interval: 0.86–0.90) at patient level csPCa detection on CT, significantly higher than the AUCs achieved by two radiologists (0.61 and 0.70) on the same task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.