Time in the biological sense is measured by cycles that range from milliseconds to years. Circadian rhythms, which measure time on a scale of 24 h, are generated by one of the most ubiquitous and well-studied timing systems. At the core of this timing mechanism is an intricate molecular mechanism that ticks away in many different tissues throughout the body. However, these independent rhythms are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input it receives from the outside world.
We determined that two mouse cryptochrome genes, mCry1 and mCry2, act in the negative limb of the clock feedback loop. In cell lines, mPER proteins (alone or in combination) have modest effects on their cellular location and ability to inhibit CLOCK:BMAL1 -mediated transcription. This suggested cryptochrome involvement in the negative limb of the feedback loop. Indeed, mCry1 and mCry2 RNA levels are reduced in the central and peripheral clocks of Clock/Clock mutant mice. mCRY1 and mCRY2 are nuclear proteins that interact with each of the mPER proteins, translocate each mPER protein from cytoplasm to nucleus, and are rhythmically expressed in the suprachiasmatic circadian clock. Luciferase reporter gene assays show that mCRY1 or mCRY2 alone abrogates CLOCK:BMAL1-E box-mediated transcription. The mPER and mCRY proteins appear to inhibit the transcriptional complex differentially.
We have examined posttranslational regulation of clock proteins in mouse liver in vivo. The mouse PERIOD proteins (mPER1 and mPER2), CLOCK, and BMAL1 undergo robust circadian changes in phosphorylation. These proteins, the cryptochromes (mCRY1 and mCRY2), and casein kinase I epsilon (CKIepsilon) form multimeric complexes that are bound to DNA during negative transcriptional feedback. CLOCK:BMAL1 heterodimers remain bound to DNA over the circadian cycle. The temporal increase in mPER abundance controls the negative feedback interactions. Analysis of clock proteins in mCRY-deficient mice shows that the mCRYs are necessary for stabilizing phosphorylated mPER2 and for the nuclear accumulation of mPER1, mPER2, and CKIepsilon. We also provide in vivo evidence that casein kinase I delta is a second clock relevant kinase.
In mammals, a master circadian "clock" resides in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN clock is composed of multiple, single-cell circadian oscillators, which, when synchronized, generate coordinated circadian outputs that regulate overt rhythms. Eight clock genes have been cloned that are involved in interacting transcriptional-/translational-feedback loops that compose the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of two clock genes that reset the core clock mechanism in the SCN. Clock-controlled genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Peripheral oscillators are controlled by the SCN and provide local control of overt rhythm expression. Greater understanding of the cellular and molecular mechanisms of the SCN clockwork provides opportunities for pharmacological manipulation of circadian timing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.