Indacenodithienothiophene (IDTT)-based postfullerene electron acceptors, such as ITIC (2,2′-[[6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrodithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene-2,8-diyl]-bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[propanedinitrile]), have become synonymous with high power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) polymer solar cells (PSCs). Here we systematically investigate the influence of end-group fluorination density and positioning on the physicochemical properties, single-crystal packing, end-group redistribution propensity, and BHJ photovoltaic performance of a series of ITIC variants, ITIC-nF (n = 0, 2, 3, 4, and 6). Increasing n from 0 → 6 contracts the optical bandgap, but only marginally lowers the LUMO for n > 4. This yields enhanced photovoltaic short-circuit current density and good open-circuit voltage, so that ITIC-6F achieves the highest PCE of the series, approaching 12% in blends with the PBDB-TF donor polymer. Single-crystal diffraction reveals that the ITIC-nF molecules cofacially interleave with ITIC-6F having the shortest π–π distance of 3.28 Å. This feature together with ZINDO-level computed intermolecular electronic coupling integrals as high as 57 meV, and B3LYP/DZP-level reorganization energies as low as 147 meV, rival or surpass the corresponding values for fullerenes, ITIC-0F, and ITIC-4F, and track a positive correlation between the ITIC-nF space-charge limited electron mobility and n. Finally, a heretofore unrecognized solution-phase redistribution process between the 2-(3-oxo-indan-1-ylidene)-malononitrile-derived end-groups (EGs) of IDTT-based NFAs, i.e., EG1-IDTT-EG1 + EG2-IDTT-EG2 ⇌ 2 EG1-IDTT-EG2, with implications for the entire ITIC PSC field, is identified and mechanistically characterized, and the effects on PSC performance are assessed.
Emerging nonfullerene acceptors (NFAs) with crystalline domains enable high-performance bulk heterojunction (BHJ) solar cells. Thermal annealing is known to enhance the BHJ photoactive layer morphology and performance. However, the microscopic mechanism of annealing-induced performance enhancement is poorly understood in emerging NFAs, especially regarding competing factors. Here, optimized thermal annealing of model system PBDB-TF:Y6 (Y6 = 2,2′-((2Z,2′Z)- ((12,13-bis(2ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]decreases the open circuit voltage (V OC ) but increases the short circuit current (J SC ) and fill factor (FF) such that the resulting power conversion efficiency (PCE) increases from 14 to 15% in the ambient environment. Here we systematically investigate these thermal annealing effects through in-depth characterizations of carrier mobility, film morphology, charge photogeneration, and recombination using SCLC, GIXRD, AFM, XPS, NEXAFS, R-SoXS, TEM, STEM, fs/ns TA spectroscopy, 2DES, and impedance spectroscopy. Surprisingly, thermal annealing does not alter the film crystallinity, R-SoXS characteristic size scale, relative average phase purity, or TEM-imaged phase separation but rather facilitates Y6 migration to the BHJ film top surface, changes the PBDB-TF/Y6 vertical phase separation and intermixing, and reduces the bottom surface roughness. While these morphology changes increase bimolecular recombination (BR) and lower the free charge (FC) yield, they also increase the average electron and hole mobility by at least 2-fold. Importantly, the increased μ h dominates and underlies the increased FF and PCE. Single-crystal X-ray diffraction reveals that Y6 molecules cofacially pack via their end groups/cores, with the shortest π−π distance as close as 3.34 Å, clarifying out-of-plane π-face-on molecular orientation in the nanocrystalline BHJ domains. DFT analysis of Y6 crystals reveals hole/electron reorganization energies of as low as 160/150 meV, large intermolecular electronic coupling integrals of 12.1−37.9 meV rationalizing the 3D electron transport, and relatively high μ e of 10 −4 cm 2 V −1 s −1 . Taken together, this work clarifies the richness of thermal annealing effects in high-efficiency NFA solar cells and tasks for future materials design.
New organic semiconductors are essential for developing inexpensive, high-efficiency, solution-processable polymer solar cells (PSCs). PSC photoactive layers are typically fabricated by film-casting a donor polymer and a fullerene acceptor blend, with ensuing solvent evaporation and phase separation creating discrete conduits for photogenerated holes and electrons. Until recently, n-type fullerene acceptors dominated the PSC literature; however, indacenodithienothiophene (IDTT)-based acceptors have recently enabled remarkable PSC performance metrics, for reasons that are not entirely obvious. We report two isomeric IDTT-based acceptors 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz-(5, 6)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']di-thiophene (ITN-C9) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz(6,7)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITzN-C9) that shed light on the exceptional IDTT properties vis-à-vis fullerenes. The neat acceptors and blends with fluoropolymer donor poly{[4,8-bis[5-(2- ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-]dithiophene2,6-diyl]--[2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo4H,8H-benzo[1,2-:4,5-]dithiophene-1,3-diyl]]} (PBDB-TF) are investigated by optical spectroscopy, cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, photovoltaic response, space-charge-limited current transport, atomic force microscopy, grazing incidence wide-angle X-ray scattering, and density functional theory-level quantum chemical analysis. The data reveal that ITN-C9 and ITzN-C9 organize such that the lowest unoccupied molecular orbital-rich end groups have intermolecular π-π distances as close as 3.31(1) Å, with electronic coupling integrals as large as 38 meV, and internal reorganization energies as small as 0.133 eV, comparable to or superior to those in fullerenes. ITN-C9 and ITzN-C9 have broad solar-relevant optical absorption, and, when blended with PBDB-TF, afford devices with power conversion efficiencies near 10%. Performance differences between ITN-C9 and ITzN-C9 are understandable in terms of molecular and electronic structure distinctions via the influences on molecular packing and orientation with respect to the electrode.
The synthesis and characterization of new semiconducting materials is essential for developing high‐efficiency organic solar cells. Here, the synthesis, physiochemical properties, thin film morphology, and photovoltaic response of ITN‐F4 and ITzN‐F4, the first indacenodithienothiophene nonfullerene acceptors that combine π‐extension and fluorination, are reported. The neat acceptors and bulk‐heterojunction blend films with fluorinated donor polymer poly{[4,8‐bis[5‐(2‐ethylhexyl)‐4‐fluoro‐2‐thienyl]benzo[1,2‐b:4,5‐b′]‐dithiophene‐2,6‐diyl]‐alt‐[2,5‐thiophenediyl[5,7‐bis(2‐ethylhexyl)‐4,8‐dioxo‐4H,8H‐benzo[1,2‐c:4,5‐c′]dithiophene‐1,3‐diyl]]} (PBDB‐TF, also known as PM6) are investigated using a battery of techniques, including single crystal X‐ray diffraction, fs transient absorption spectroscopy (fsTA), photovoltaic response, space‐charge‐limited current transport, impedance spectroscopy, grazing incidence wide angle X‐ray scattering, and density functional theory level computation. ITN‐F4 and ITzN‐F4 are found to provide power conversion efficiencies greater and internal reorganization energies less than their non‐π‐extended and nonfluorinated counterparts when paired with PBDB‐TF. Additionally, ITN‐F4 and ITzN‐F4 exhibit favorable bulk‐heterojunction relevant single crystal packing architectures. fsTA reveals that both ITN‐F4 and ITzN‐F4 undergo ultrafast hole transfer (<300 fs) in films with PBDB‐TF, despite excimer state formation in both the neat and blend films. Taken together and in comparison to related structures, these results demonstrate that combined fluorination and π‐extension synergistically promote crystallographic π‐face‐to‐face packing, increase crystallinity, reduce internal reorganization energies, increase interplanar π–π electronic coupling, and increase power conversion efficiency.
Accurate single-crystal X-ray diffraction data offer a unique opportunity to compare and contrast the atomistic details of bulk heterojunction photovoltaic small-molecule acceptor structure and packing, as well as provide an essential starting point for computational electronic structure and charge transport analysis. Herein, we report diffraction-derived crystal structures and computational analyses on the n-type semiconductors which enable some of the highest efficiency organic solar cells produced to date, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.